-
公开(公告)号:CN108085632B
公开(公告)日:2019-07-23
申请号:CN201711304450.X
申请日:2017-12-11
申请人: 华中科技大学 , 深圳华中科技大学研究院
摘要: 本发明属于非晶合金热塑性成形领域,并公开了一种基于超声振动的塑性成形及梯度增韧方法与装置。该方法包括:(a)在待成形的非晶合金零件上划分待加强韧性的部位用于形成纳米晶增韧相;(b)设计用于成形所用的增韧装置,其包括与超声振动变幅杆相连的镶块和加热棒,镶块与待加强韧性的部位相对应,用于对其施加超声振动,加热棒用于将待加工的原材料坯料加热至其成形温度;(c)将原材料坯料置于装置中,加热棒加热,装置合模成形所需的非晶合金零件,合模过程中启动超声振动,开模时停止。同时本发明还公开所采用的装置。通过本发明,增韧与热塑性成形同时进行,实现成形和韧化的一体化,简化生产工序,缩短加工时间,提高尺寸精度。
-
公开(公告)号:CN108080638A
公开(公告)日:2018-05-29
申请号:CN201810087943.0
申请日:2018-01-30
申请人: 华中科技大学 , 深圳华中科技大学研究院
摘要: 本发明属于非晶合金的増材制造领域,并公开了一种非晶合金箔材的激光3D打印成形系统及成形方法。通过第一激光器剪裁非晶合金箔材多余样料,再利用第二激光器对剩余部分选择性的扫描加热,使非晶合金加热到过冷液相区的超塑性状态,然后用预热的辊碾压,结合超声振动作用,使上下两层非晶合金箔材产生原子间联系,并急速降温冷却,从而成形大尺寸复杂形状、具有孔洞结构的非晶合金零件。本发明克服了传统非晶合金制备方法对非晶合金件尺寸和形状的限制,采用非晶合金箔材作为原料,相较于传统3D打印非晶粉末成本更低,采取辊轮碾压超薄非晶合金箔材制造,制备的非晶合金零件内部结构更致密。
-
公开(公告)号:CN114951945A
公开(公告)日:2022-08-30
申请号:CN202210468339.9
申请日:2022-04-29
申请人: 华中科技大学 , 文华学院 , 深圳华中科技大学研究院
摘要: 本发明属于复合板的非晶合金连接和柔性成形技术领域,更具体地,涉及一种金属复合板的一体化制备成形系统及方法。该系统包括前置超声预成形组件和后置主成形组件;前置超声预成形组件用于对预热后的复合待成形复合板坯除去氧化层,并使部分非晶合金被压入待复合成形的金属板表面凹槽中,起到预焊接的作用;再利用后置主成形组件的工具头将加热至过冷液相区的非晶合金压入并充满金属板表面的凹槽中。本发明将现有技术金属板的整体复合离散为金属板之间的点复合,使得金属板之间各个区域随工具头的运动均能被施加相同的应力,以板料的局部变形代替整体变形,减小了板料的回弹量和应力集中现象,实现了变形的均匀分布,提高了板料的成形极限。
-
公开(公告)号:CN111753452A
公开(公告)日:2020-10-09
申请号:CN202010580979.X
申请日:2020-06-23
申请人: 华中科技大学 , 深圳华中科技大学研究院
IPC分类号: G06F30/23 , G06F30/27 , G06N3/00 , B21D26/00 , B21D26/14 , B23K26/00 , G06F119/08 , G06F119/14
摘要: 本发明属于非晶合金柔性成形领域,更具体地,涉及一种非晶合金零件的能场辅助智能多点成形方法及系统。首先根据目标非晶合金零件的几何轮廓信息和板坯的尺寸信息,将板坯划分为若干个成形区域;赋予各成形区域包括能场在内的成形工艺参数,构成该零件内部的场分布,对该非晶合金零件进行成形过程的有限元模拟,然后利用遗传控制算法对数据样本进行寻优,得到针对不同成形区域的效果最优的工艺参数组合,即最优场分布;在获得的最优场分布下采用多点成形工艺进行目标非晶合金零件的成形。本发明通过在零件内部构成场分布,协调零件整体成形,能够实现非晶合金复杂零件的形性协同智能制造,降低生产成本,提高产品质量。
-
公开(公告)号:CN118272694A
公开(公告)日:2024-07-02
申请号:CN202410402765.1
申请日:2024-04-03
申请人: 华中科技大学 , 深圳华中科技大学研究院
IPC分类号: C22C1/11 , B22F3/105 , B22F3/24 , B22F3/14 , B82Y30/00 , B82Y40/00 , C22C1/04 , C22F1/00 , C22F1/18
摘要: 本申请属于块体非晶合金制备领域,更具体地,涉及一种具有可控尺度相分离结构的大尺寸非晶合金制备方法。首先将非晶合金粉末通过放电等离子烧结得到非晶合金块体,在非晶合金内部预先形成有序团簇;然后采用深冷循环诱导纳米相分离而不触发结晶,经历一定周次深冷循环处理后,驱动易扩散原子在事先形成的有序团簇上形核、长大形成新的纳米非晶相,得到大尺寸的相分离非晶合金。本发明将经过放电等离子烧结的块体非晶合金通过简单的深冷循环处理就可以诱导发生相分离,方法简单易行,不用依赖于混合焓设计,打破了相分离块体非晶合金的尺寸限制,而且深冷循环除了过程中相分离的状态易于捕捉,所适用的非晶合金体系更加广泛。
-
公开(公告)号:CN108080638B
公开(公告)日:2023-07-04
申请号:CN201810087943.0
申请日:2018-01-30
申请人: 华中科技大学 , 深圳华中科技大学研究院
摘要: 本发明属于非晶合金的増材制造领域,并公开了一种非晶合金箔材的激光3D打印成形系统及成形方法。通过第一激光器剪裁非晶合金箔材多余样料,再利用第二激光器对剩余部分选择性的扫描加热,使非晶合金加热到过冷液相区的超塑性状态,然后用预热的辊碾压,结合超声振动作用,使上下两层非晶合金箔材产生原子间联系,并急速降温冷却,从而成形大尺寸复杂形状、具有孔洞结构的非晶合金零件。本发明克服了传统非晶合金制备方法对非晶合金件尺寸和形状的限制,采用非晶合金箔材作为原料,相较于传统3D打印非晶粉末成本更低,采取辊轮碾压超薄非晶合金箔材制造,制备的非晶合金零件内部结构更致密。
-
公开(公告)号:CN111753452B
公开(公告)日:2023-04-07
申请号:CN202010580979.X
申请日:2020-06-23
申请人: 华中科技大学 , 深圳华中科技大学研究院
IPC分类号: G06F30/23 , G06F30/27 , G06N3/006 , B21D26/00 , B21D26/14 , B23K26/00 , G06F119/08 , G06F119/14
摘要: 本发明属于非晶合金柔性成形领域,更具体地,涉及一种非晶合金零件的能场辅助智能多点成形方法及系统。首先根据目标非晶合金零件的几何轮廓信息和板坯的尺寸信息,将板坯划分为若干个成形区域;赋予各成形区域包括能场在内的成形工艺参数,构成该零件内部的场分布,对该非晶合金零件进行成形过程的有限元模拟,然后利用遗传控制算法对数据样本进行寻优,得到针对不同成形区域的效果最优的工艺参数组合,即最优场分布;在获得的最优场分布下采用多点成形工艺进行目标非晶合金零件的成形。本发明通过在零件内部构成场分布,协调零件整体成形,能够实现非晶合金复杂零件的形性协同智能制造,降低生产成本,提高产品质量。
-
公开(公告)号:CN108085632A
公开(公告)日:2018-05-29
申请号:CN201711304450.X
申请日:2017-12-11
申请人: 华中科技大学 , 深圳华中科技大学研究院
摘要: 本发明属于非晶合金热塑性成形领域,并公开了一种基于超声振动的塑性成形及梯度增韧方法与装置。该方法包括:(a)在待成形的非晶合金零件上划分待加强韧性的部位用于形成纳米晶增韧相;(b)设计用于成形所用的增韧装置,其包括与超声振动变幅杆相连的镶块和加热棒,镶块与待加强韧性的部位相对应,用于对其施加超声振动,加热棒用于将待加工的原材料坯料加热至其成形温度;(c)将原材料坯料置于装置中,加热棒加热,装置合模成形所需的非晶合金零件,合模过程中启动超声振动,开模时停止。同时本发明还公开所采用的装置。通过本发明,增韧与热塑性成形同时进行,实现成形和韧化的一体化,简化生产工序,缩短加工时间,提高尺寸精度。
-
公开(公告)号:CN114951945B
公开(公告)日:2023-04-28
申请号:CN202210468339.9
申请日:2022-04-29
申请人: 华中科技大学 , 文华学院 , 深圳华中科技大学研究院
摘要: 本发明属于复合板的非晶合金连接和柔性成形技术领域,更具体地,涉及一种金属复合板的一体化制备成形系统及方法。该系统包括前置超声预成形组件和后置主成形组件;前置超声预成形组件用于对预热后的复合待成形复合板坯除去氧化层,并使部分非晶合金被压入待复合成形的金属板表面凹槽中,起到预焊接的作用;再利用后置主成形组件的工具头将加热至过冷液相区的非晶合金压入并充满金属板表面的凹槽中。本发明将现有技术金属板的整体复合离散为金属板之间的点复合,使得金属板之间各个区域随工具头的运动均能被施加相同的应力,以板料的局部变形代替整体变形,减小了板料的回弹量和应力集中现象,实现了变形的均匀分布,提高了板料的成形极限。
-
公开(公告)号:CN117329903A
公开(公告)日:2024-01-02
申请号:CN202311197284.3
申请日:2023-09-15
申请人: 华中科技大学
摘要: 本发明提供了一种基于仿生结构的智能散热皮肤及其制备方法,属于智能散热领域,该智能散热皮肤包括ZrO2陶瓷阵列、底板以及若干散热绒毛和限位环,其中:ZrO2陶瓷阵列固定在底板上;各个散热绒毛分别固定在ZrO2陶瓷阵列的上表面;各个限位环套在散热绒毛的外侧并固定在底板上。本发明借助ZrO2陶瓷阵列随着温度的变化进行体积收缩或膨胀时,能够驱动散热绒毛如同人体的汗毛一样呈一定角度“站立”或“躺下”,以此调控气流与智能散热皮肤的接触面积,从而通过改变散热速度实现智能散热,不需要使用复杂的温度调控系统,能够实现温度自适应智能调控,并能够实现长期使用并在多次循环中保持性能稳定。
-
-
-
-
-
-
-
-
-