基于粗轧镰刀弯缺陷的精轧上游机架预摆辊缝的修正方法

    公开(公告)号:CN117463796A

    公开(公告)日:2024-01-30

    申请号:CN202311473773.7

    申请日:2023-11-07

    Abstract: 本发明提供了一种基于粗轧镰刀弯缺陷的精轧上游机架预摆辊缝的修正方法,包括以下步骤:S1、现场采集热轧粗轧生产线的中间坯中心线数据、镰刀弯特征参数,通过DBSCAN算法对样品数据集合中的中间坯中心线数据聚类分析,对镰刀弯缺陷的定性分类,构建镰刀弯缺陷标准数据库;S2、轧制时,对实时采集的中间坯中心线曲线通过改进的DTW算法进行识别,确定中间坯镰刀弯的缺陷类型;S3、针对头部弯曲缺陷的中间坯,计算精轧上游三机架预摆辊缝值并下发至轧机;S4、根据现场轧制规格对精轧上游三机架的辊缝单次调整量进行限幅。本发明实现了精轧上游三机架辊缝的实时有效调整,最大限度消除了镰刀弯缺陷,避免带钢跑偏,对提高带钢质量具有重要意义。

    一种管道机器人
    4.
    发明授权

    公开(公告)号:CN115138650B

    公开(公告)日:2024-01-26

    申请号:CN202210602474.8

    申请日:2022-05-30

    Abstract: 本发明提供一种管道机器人,属于管道机器人领域;包括机体,所述机体上设有移动机构及清洗机构,移动机构包括多个驱动轮,机体上还设有用于机体在不同内径管道中移动的变径组件,变径组件包括可拆卸变径组件以及自适应变径组件,机体上还设有用于多个驱动轮同步转向的偏转组件,偏转组件包括用于驱动轮转动的舵机,清洗机构包括安装在机体端部的毛刷,且机体端部还安装有带动毛刷转动的旋转组件,以及用于调整多个毛刷偏转角度的调节组件。本发明结构合理,通过变径组件与偏转组件配合使用,大大提高了管道机器人的作业范围,还提高了管道机器人在不同内径管道内作业时的稳定性,优化了对管道内壁的清洗效果。

    基于无线传感器网络的工业生产车间安防定位系统及方法

    公开(公告)号:CN101110735A

    公开(公告)日:2008-01-23

    申请号:CN200710120739.6

    申请日:2007-08-24

    Abstract: 一种基于无线传感器网络的工业生产车间安防定位系统及方法,涉及工业生产安防定位技术领域。由便携式的移动节点(1)、布置于生产车间的信标节点(2)、布置于监控室的sink节点(3)组成;节点间采用2.4G的无线通信方式连接,移动节点发送定位请求指令,接收在其无线射程内信标节点的应答信号,通过基于接收信号强度的最小环段区域中心定位方法得到自己的位置信息,依据此信息判断是否应该报警,并将信息传送到sink节点;监控主机与sink节点通过串口进行通信,实时显示移动节点的位置,并存储进行相关信息。优点在于,移动节点仅需要有与邻居信标节点进行通信的能力就可实现定位,在系统及节点上不必增加额外的硬件设施,降低了系统的成本和功耗。

    一种管道机器人
    8.
    发明公开

    公开(公告)号:CN115138650A

    公开(公告)日:2022-10-04

    申请号:CN202210602474.8

    申请日:2022-05-30

    Abstract: 本发明提供一种管道机器人,属于管道机器人领域;包括机体,所述机体上设有移动机构及清洗机构,移动机构包括多个驱动轮,机体上还设有用于机体在不同内径管道中移动的变径组件,变径组件包括可拆卸变径组件以及自适应变径组件,机体上还设有用于多个驱动轮同步转向的偏转组件,偏转组件包括用于驱动轮转动的舵机,清洗机构包括安装在机体端部的毛刷,且机体端部还安装有带动毛刷转动的旋转组件,以及用于调整多个毛刷偏转角度的调节组件。本发明结构合理,通过变径组件与偏转组件配合使用,大大提高了管道机器人的作业范围,还提高了管道机器人在不同内径管道内作业时的稳定性,优化了对管道内壁的清洗效果。

    一种催化裂化降硫材料及其制备方法

    公开(公告)号:CN101570694B

    公开(公告)日:2012-10-17

    申请号:CN200810105651.1

    申请日:2008-04-30

    Abstract: 本发明涉及一种催化裂化降硫材料及其制备方法,以V2O5计钒的掺入量为0.5~20%,以Al2O3计铝的掺入量为0.1~30%,以TiO2计钛的掺入量为0.1~30%,余量为氧化硅,各成分总重量为100%;首先将表面活性剂溶解到酸性水溶液中,溶解温度为25~95℃;待表面活性剂完全溶解后,将硅源与含有表面活性剂的酸性水溶液混合水解得到溶胶;然后在30~80℃下使溶胶固化为湿凝胶;得到的湿凝胶在30~200℃下继续老化1~10天;老化完成的湿凝胶在50~120℃下干燥1~7天;干燥完成的干凝胶在300~800℃下焙烧1~20小时得到介孔降硫材料;具有较高的石油烃类裂化活性和明显的脱硫活性。

Patent Agency Ranking