-
公开(公告)号:CN116176836B
公开(公告)日:2024-07-19
申请号:CN202310130656.4
申请日:2023-02-17
Applicant: 北京科技大学
IPC: B64C33/02
Abstract: 本发明涉及一种基于弧面翼的仿生扑翼飞行器转向机构,包括:控制模块、舵机、舵机摆臂、两种弧面翼翼肋、弧面翼可弯折翼肋、第一连接杆、第二连接杆,本发明能够仅通过仿生扑翼飞行器的弧面翼机翼的可弯折翼肋的反向运动,实现弧面翼的弯度和迎角的反向变化,从而改变仿生扑翼飞行器两侧机翼扑动过程中产生的升力和推力,形成差值,最终实现仿生扑翼飞行器的转向,并最大程度实现仿生外观,并且整个机构运行平顺,稳定可靠。
-
公开(公告)号:CN117032303B
公开(公告)日:2024-04-30
申请号:CN202311024379.5
申请日:2023-08-14
Applicant: 北京科技大学
Abstract: 本发明提供一种基于视觉引导的扑翼飞行机器人自主降落方法,属于仿生扑翼飞行机器人应用技术领域。所述方法包括:步骤1,将ArUcoMarker嵌套组合的降落标志固定在降落平台上;步骤2,引导扑翼飞行机器人在降落平台上空盘旋绕圆飞行;步骤3,拍摄降落标志,解算出扑翼飞行机器人与降落标志的相对位姿;步骤4,生成低于当前飞行高度的飞行航点坐标引导扑翼飞行机器人围绕降落标志绕圆飞行下降高度;步骤5,判断扑翼飞行机器人是否下降至一定的高度,若否,则重复执行步骤3和步骤4的操作;步骤6,若是,则生成降落标志的飞行航点坐标引导扑翼飞行机器人朝降落平台直线飞行,直至降落在降落平台上。采用本发明,能够提高扑翼飞行机器人自主降落的精度。
-
公开(公告)号:CN116778360B
公开(公告)日:2024-03-19
申请号:CN202310682584.4
申请日:2023-06-09
Applicant: 北京科技大学
IPC: G06V20/17 , G01C11/04 , G01C11/02 , G01C21/16 , G06V20/40 , G06V10/82 , G06N3/0464 , G06N3/08 , G06T7/70
Abstract: 本发明涉及无人机视觉技术领域,特别是指一种面向扑翼飞行机器人的地面目标定位方法及装置。通过长短焦组合相机,对周围环境进行拍摄,获得周围环境视频图像;通过机身传感器收集信息,获得多传感器数据;在周围环境视频图像中,发现跟踪目标,进行连续拍摄;基于多传感器数据,在拍摄中进行机械稳像,获得目标视频图像;根据目标视频图像以及多传感器数据进行计算,获得地面目标定位结果。本发明是一种高精度、低负载的适用于扑翼飞行机器人的地面目标定位方法。
-
公开(公告)号:CN116862944A
公开(公告)日:2023-10-10
申请号:CN202310768372.8
申请日:2023-06-27
Applicant: 北京科技大学
Abstract: 本发明公开了一种面向扑翼飞行机器人的实时电子稳像方法及系统,所述方法包括:获取扑翼飞行机器人进行飞行航拍时,实时采集的视频流;对视频流中的每帧图像分别进行网格划分,并对每帧图像中的像素点分别进行等间隔采样,得到特征点;基于预设的光流估计网络确定每一帧图像中的每一特征点的光流信息;通过对每一网格顶点附近的特征点的光流信息进行滤波,得到各网格顶点的光流信息,进而得到原始运动路径;结合扑翼运动周期,对原始运动路径进行平滑滤波,生成一条平滑路径;进而根据生成的平滑路径对图像序列进行反向位置补偿,生成稳定后的视频流。本发明方案计算量小,拥有实时处理能力,可较好地满足扑翼飞行机器人的实时航拍画面稳定需求。
-
公开(公告)号:CN116778360A
公开(公告)日:2023-09-19
申请号:CN202310682584.4
申请日:2023-06-09
Applicant: 北京科技大学
IPC: G06V20/17 , G01C11/04 , G01C11/02 , G01C21/16 , G06V20/40 , G06V10/82 , G06N3/0464 , G06N3/08 , G06T7/70
Abstract: 本发明涉及无人机视觉技术领域,特别是指一种面向扑翼飞行机器人的地面目标定位方法及装置。通过长短焦组合相机,对周围环境进行拍摄,获得周围环境视频图像;通过机身传感器收集信息,获得多传感器数据;在周围环境视频图像中,发现跟踪目标,进行连续拍摄;基于多传感器数据,在拍摄中进行机械稳像,获得目标视频图像;根据目标视频图像以及多传感器数据进行计算,获得地面目标定位结果。本发明是一种高精度、低负载的适用于扑翼飞行机器人的地面目标定位方法。
-
公开(公告)号:CN116360492A
公开(公告)日:2023-06-30
申请号:CN202310345807.8
申请日:2023-04-03
Applicant: 北京科技大学
IPC: G05D1/10
Abstract: 本发明涉及扑翼飞行机器人视觉跟踪技术领域,特别是指一种扑翼飞行机器人目标跟踪方法及系统。包括:初始化机载视觉处理模块与机载相机云台模块;机载相机云台模块获取扑翼飞行机器人的长焦相机航拍图像以及短焦相机航拍图像;机载视觉处理模块基于短焦相机航拍图像以及目标跟踪算法,选取待跟踪目标;机载视觉处理模块通过目标跟踪算法,获取待跟踪目标的像素位置;机载视觉处理模块根据待跟踪目标的像素位置,通过云台控制器控制机载相机云台模块转动;机载视觉处理模块通过相机映射关系获得待跟踪目标在长焦相机航拍图像中的位置,实现对待跟踪目标的实时跟踪。采用本发明,可以缩小目标匹配的范围,提高扑翼飞行机器人目标跟踪的稳定性。
-
公开(公告)号:CN117784693A
公开(公告)日:2024-03-29
申请号:CN202311856309.6
申请日:2023-12-29
Applicant: 北京科技大学
IPC: G05B19/042
Abstract: 在扑翼飞行机器人领域,本发明提供一种面向扑翼飞行机器人的云台控制系统及控制方法,包括:两轴云台,IMU惯导单元,磁编码器模块,云台控制模块和俯仰缓冲稳像模块,两轴云台包括俯仰电机和偏航电机;IMU惯导单元安装在扑翼飞行机器人机身上,IMU惯导单元检测俯仰自由度倾角;磁编码器模块将俯仰电机的转子转动角度和偏航电机的转子转动角度反馈至云台控制模块;云台控制模块根据转子转动角度进行计算,得到下一时刻两轴云台的控制信号,云台控制模块将下一时刻两轴云台的控制信号发送至两轴云台;俯仰缓冲稳像模块根据俯仰自由度倾角调整两轴云台位置,本发明解决了实际应用中缺乏面向扑翼飞行机器人的小型云台精准控制系统。
-
公开(公告)号:CN116360492B
公开(公告)日:2024-01-30
申请号:CN202310345807.8
申请日:2023-04-03
Applicant: 北京科技大学
IPC: G05D1/46 , G05D1/495 , G05D101/15 , G05D109/20
Abstract: 本发明涉及扑翼飞行机器人视觉跟踪技术领域,特别是指一种扑翼飞行机器人目标跟踪方法及系统。包括:初始化机载视觉处理模块与机载相机云台模块;机载相机云台模块获取扑翼飞行机器人的长焦相机航拍图像以及短焦相机航拍图像;机载视觉处理模块基于短焦相机航拍图像以及目标跟踪算法,选取待跟踪目标;机载视觉处理模块通过目标跟踪算法,获取待跟踪目标的像素位置;机载视觉处理模块根据待跟踪目标的像素位置,通过云台控制器控制机载相机云台模块转动;机载视觉处理模块通过相机映射关系获得待跟踪目标在长焦相机航拍图像中的位置,实现对待跟踪目标的实时跟踪。采用本发明,可以缩小目标匹配的范围,提高扑翼飞行机器人目标跟踪的稳定性。(56)对比文件Najmaddin Abo Mosali等.Twin DelayedDeep Deterministic Policy Gradient-BasedTarget Tracking for Unmanned AerialVehicle With Achievement Rewarding andMultistage Training《.IEEE Access》.2022,全文.Hongwei She等.Design andimplementation of a target tracking andranging system based on binocular vision《.2021 IEEE International Conference onRecent Advances in Systems Science andEngineering (RASSE)》.2022,全文.付强等.仿生扑翼飞行器的视觉感知系统研究进展.工程科学学报.2019,(第12期),全文.沈旭等.机载平台下基于深度检测网络的目标跟踪重捕算法.红外技术.2020,(第07期),全文.余志超等.结合深度轮廓特征的改进孪生网络跟踪算法.西安电子科技大学学报.2020,(第03期),全文.黄一凡等.基于二自由度转台的双目视觉跟踪技术研究.电子设计工程.2018,(第14期),全文.
-
公开(公告)号:CN117032303A
公开(公告)日:2023-11-10
申请号:CN202311024379.5
申请日:2023-08-14
Applicant: 北京科技大学
IPC: G05D1/10
Abstract: 本发明提供一种基于视觉引导的扑翼飞行机器人自主降落方法,属于仿生扑翼飞行机器人应用技术领域。所述方法包括:步骤1,将ArUcoMarker嵌套组合的降落标志固定在降落平台上;步骤2,引导扑翼飞行机器人在降落平台上空盘旋绕圆飞行;步骤3,拍摄降落标志,解算出扑翼飞行机器人与降落标志的相对位姿;步骤4,生成低于当前飞行高度的飞行航点坐标引导扑翼飞行机器人围绕降落标志绕圆飞行下降高度;步骤5,判断扑翼飞行机器人是否下降至一定的高度,若否,则重复执行步骤3和步骤4的操作;步骤6,若是,则生成降落标志的飞行航点坐标引导扑翼飞行机器人朝降落平台直线飞行,直至降落在降落平台上。采用本发明,能够提高扑翼飞行机器人自主降落的精度。
-
公开(公告)号:CN116176836A
公开(公告)日:2023-05-30
申请号:CN202310130656.4
申请日:2023-02-17
Applicant: 北京科技大学
IPC: B64C33/02
Abstract: 本发明涉及一种基于弧面翼的仿生扑翼飞行器转向机构,包括:控制模块、舵机、舵机摆臂、两种弧面翼翼肋、弧面翼可弯折翼肋、第一连接杆、第二连接杆,本发明能够仅通过仿生扑翼飞行器的弧面翼机翼的可弯折翼肋的反向运动,实现弧面翼的弯度和迎角的反向变化,从而改变仿生扑翼飞行器两侧机翼扑动过程中产生的升力和推力,形成差值,最终实现仿生扑翼飞行器的转向,并最大程度实现仿生外观,并且整个机构运行平顺,稳定可靠。
-
-
-
-
-
-
-
-
-