一种电推进系统阴极可靠点火方法

    公开(公告)号:CN117514676A

    公开(公告)日:2024-02-06

    申请号:CN202311574881.3

    申请日:2023-11-23

    IPC分类号: F03H1/00 B64G1/40

    摘要: 本发明涉及空间电推进技术领域,特别涉及一种电推进系统阴极可靠点火方法。包括:依次进行压力调节模块的压力调节闭环和流量控制模块的流量调节闭环;开启电源处理单元,以进行阴极点火;分别开启电源处理单元的额定电流模式、大电流模式和大流率模式,并在每一个模式开启后,对阴极是否点火成功进行判定;当任意一个模式点火成功时,执行后续流程;若所有模式均未点火成功,则关闭电推进系统。本方案通过依次利用额定电流模式、大电流模式和大流率模式对阴极进行点火,来提高电推进系统的阴极点火可靠性。

    一种适用于双组元推进系统的工作点确定方法

    公开(公告)号:CN113239644B

    公开(公告)日:2023-12-12

    申请号:CN202110484596.7

    申请日:2021-04-30

    摘要: 本发明提出的一种适用于双组元推进系统的工作点确定方法,通过对工作点输出和调平流阻的双参数寻优,获取最终的系统设计点,有益于推进系统的初期设计,提高系统的设计可靠性,保证后续的推进系统在轨性能;本发明的方法基于真实推进剂/氦气下的部件性能试验数据,无需构建复杂的数学理论模型,避免了理论误差,方法快速有效,操作简单易行,可大幅度提高数值仿真的灵活性与可靠性;本发明的方法通用性强,不仅模块间可自由组合,而且模型库可随时补充,适用于常规的双组元推进系统设计,具有广泛的应用价值和推广前景。

    一种双组元推进系统大范围高精度混合比调整方法

    公开(公告)号:CN115875156A

    公开(公告)日:2023-03-31

    申请号:CN202211436571.0

    申请日:2022-11-16

    IPC分类号: F02K9/56 B64G1/40

    摘要: 一种双组元推进系统大范围高精度混合比调整方法,氧燃贮箱采用了两个独立的供气增压系统,两套供气增压系统完全一致,通过压力控制阀门组件为推进剂贮箱进行增压气体的减压与供给。供气减压系统采用了“Bang‑Bang”控制方式,基于变轨发动机氧化剂/燃烧剂入口管路上的高精度压力传感器的压力信号反馈,控制气路减压系统压力控制阀门组件的开关,使得系统氧化剂/燃烧剂供给压力始终维持在设定值,进而达到准确控制系统混合比的目的,使得在轨飞行期间变轨发动机点火的入口压力条件与地面试验时保持一致,变轨发动机可始终工作在额定工况。由于氧化剂/燃烧剂贮箱独立增压,使得发动机氧燃供给压力相互独立且可调节,可实现主动控制混合比。

    一种封闭式的低填充率并联贮箱加注方法

    公开(公告)号:CN109854957B

    公开(公告)日:2021-02-05

    申请号:CN201910165273.4

    申请日:2019-03-05

    IPC分类号: F17D3/01 F17D1/02

    摘要: 本发明公开了一种封闭式的低填充率并联贮箱加注方法。该方法包括:在进行推进剂加注时,针对低填充率推进系统并联贮箱的特点,调整并联贮箱Tox1和Tox2至不同背压,获取贮箱Tox2加注量的称重零点;打开贮箱Tox2的下游液口自锁阀LV2,对贮箱Tox2进行加注至预定加注量;关闭自锁阀LV2,获取贮箱Tox1加注量的称重零点;打开贮箱Tox1的下游液口自锁阀LV1,对贮箱Tox1进行加注至预定加注量;最后打开贮箱Tox1、Tox2的上游气口加排阀,给并联贮箱充入预定压力的挤压氦气。本发明实现了不需要通过气口放气,而达到低填充率并联贮箱加注的目的。

    一种基于人工智能算法的航天器在轨推力预测方法

    公开(公告)号:CN111470075A

    公开(公告)日:2020-07-31

    申请号:CN202010300579.9

    申请日:2020-04-16

    IPC分类号: B64G99/00 G06N3/02

    摘要: 本发明公开了一种基于人工智能算法的航天器在轨推力预测方法。该方法包括:结合地面试验数据,获取减压器和单向阀的神经网络模型;通过上一时刻的贮箱压力和温度,获取当前的氧路和燃路流量;通过流量数据,得到当前的贮箱压力;通过当前的气瓶和贮箱压力,结合构造的神经网络模型,获取当前的减压器输出压力和单向阀输出流量,进而计算得到下一时刻的气瓶压力;当计算时间大于点火时间,结束以上步骤,计算得到发动机的预测推力。进一步可以利用在轨数据修正神经网络模型,从而获取修正后的预测推力。本发明实现了通过人工智能算法达到高精度在轨推力预测的目的,避免了常规数学模型构造的难题。

    一种基于无气体旁路推进系统的调节平衡排放的方法

    公开(公告)号:CN107776916A

    公开(公告)日:2018-03-09

    申请号:CN201710828687.1

    申请日:2017-09-14

    IPC分类号: B64G1/40

    CPC分类号: B64G1/402

    摘要: 本发明公开了一种基于无气体旁路推进系统的调节平衡排放的方法。该方法包括:在卫星变轨结束时刻,对于无气体旁路双组元推进系统中并联设置且内装有同种推进剂的两只贮箱MON-A和MON-B,关闭自锁阀LV1、LV2和LV3,打开自锁阀LV4,分别获取所述两只贮箱的贮箱压力、以及剩余推进剂的质量和密度;计算剩余推进剂多的贮箱MON-B的目标调节压力点;打开MON-B对应的自锁阀LV3,将贮箱MON-B增压至目标调节压力点,然后关闭自锁阀LV3;打开自锁阀LV2,利用压力差平衡两贮箱的推进剂。本发明实现了对无气体旁路的双组元推进系统进行并联贮箱平衡排放的调节的目的。

    一种推进剂剩余量测量系统和方法

    公开(公告)号:CN104075769A

    公开(公告)日:2014-10-01

    申请号:CN201410302905.4

    申请日:2014-06-27

    IPC分类号: G01F22/02

    摘要: 本发明提供一种推进剂剩余量测量系统,包括气瓶、压力传感器、自锁阀、压差计、及推进剂贮箱。本发明还提供一种推进剂剩余量测量方法,包括设置自锁阀的状态;控制自锁阀,使两个气瓶和两个贮箱初始状态一致;控制自锁阀,使其中一个气瓶放弃,一个气瓶状态保持,一个贮箱增压,一个贮箱状态保持,并记录测量系统的压力、温度计压差值;控制自锁阀,还原系统的初始状态;根据记录的测量系统压力、温度及压差值计算推进剂的剩余体积。采用本发明的方法,不仅能够省去原有气体注入法的气容配置,还大幅度提高了测量次数,可达到50次以上。

    一种电推进系统工质供给故障检测方法

    公开(公告)号:CN117554051A

    公开(公告)日:2024-02-13

    申请号:CN202311541266.2

    申请日:2023-11-17

    IPC分类号: G01M13/00 G01L27/00

    摘要: 本发明提供了一种电推进系统工质供给故障检测方法,其中方法包括:确定电推进工质供给系统的任务剖面;所述任务剖面包括如下四个任务执行阶段:压力闭环补气阶段、压力闭环稳定阶段、流量控制温度启动阶段和流量控制温度稳定控制阶段;确定每一个阶段内对所述电推进工质供给系统进行故障检测的目标对象以及相应的故障检测方式;当所述电推进工质供给系统启动后,判定所述电推进工质供给系统的任务执行阶段,并利用相应阶段的故障检测方式对相应目标对象进行故障检测。本方案,能够及时检测出故障,提高电推进工质供给系统的可靠性。