一种用于高温碱金属热管气液温度的测量装置及测量方法

    公开(公告)号:CN118191010A

    公开(公告)日:2024-06-14

    申请号:CN202410312907.5

    申请日:2024-03-19

    摘要: 本发明涉及相变换热设备技术领域,具体涉及一种用于高温碱金属热管气液温度的测量装置及测量方法,测量装置包括散热管、固定帽和固定座,所述散热管与热管固定连接,所述散热管远离热管的一端设有固定座,所述固定座与所述散热管之间设有密封圈,所述固定帽与所述散热管连接,所述固定座的顶部穿过所述固定帽,所述固定座、散热管的内部均设有用于热电偶穿过的通孔。本申请可获得密闭空间内的温度等关键部位温度信息。可测量不同位置的温度减少了热电偶的布置数量,降低成本。在高温环境下工作的密封性好。使用动密封的方式将热电偶插入热管内部,使得直接测量内部温度分布成为可能。

    一种反应堆堆芯制备方法

    公开(公告)号:CN117457246A

    公开(公告)日:2024-01-26

    申请号:CN202311416747.0

    申请日:2023-10-30

    IPC分类号: G21C21/02 B05D1/12 B05D3/02

    摘要: 本发明涉及3D打印反应堆技术领域,具体而言,涉及一种反应堆堆芯制备方法,用于制备反应堆堆芯,堆芯包括SiC壳体及位于壳体内的TRISO燃料,制备方法包括以下步骤:铺设SiC粉料作为粉床,通过喷头喷射粘结剂于粉床生成部分壳体;循环上述步骤直至形成第一状态壳体;烘干第一状态壳体,使粘结剂固化生成第二状态壳体;对第二状态壳体进行第一化学气相浸渗,生成第三状态壳体;将TRISO燃料填充至第三状态壳体,并进行第二化学气相浸渗生成堆芯。通过烘干、第一化学气相浸渗和第二化学气相浸渗逐步提高第一状态壳体的致密性,最终得到高致密性的堆芯。

    一种大破口失水事故分析方法及系统

    公开(公告)号:CN113536537B

    公开(公告)日:2024-01-12

    申请号:CN202110647075.9

    申请日:2021-06-10

    IPC分类号: G06F30/20 G06F119/08

    摘要: 本发明涉及反应堆热工水力设计及安全分析技术领域,具体公开了一种大破口失水事故分析方法及系统。选取核电站大破口失水事故相关的指标参数;建立稳态计算模型,对大破口失水事故相关参数进行稳态计算,并进行稳态计算后的参数值校验;构建瞬态计算模型,并对大破口失水事故相关参数进行瞬态计算,并根据计算结果与实际的破口、核电厂外电情况进行对比,并在出现偏离时,重新构建瞬态计算模型并进行瞬态计算;进行安注水扣除,获得液位参数值,并对瞬态模型进行更新后,在稳态计算结果基础上进行再计算,并在完成计算后,进行参数显示及分析。该方法和系统解决了压水堆大破口失水事故分析的工况多、流程繁琐、人因失误率高的难题。

    一种适配堆芯能量分布的冷却剂分流结构拓扑优化方法

    公开(公告)号:CN114676617A

    公开(公告)日:2022-06-28

    申请号:CN202210330664.9

    申请日:2022-03-31

    摘要: 一种适配堆芯能量分布的冷却剂分流结构拓扑优化方法,采用等几何粒子法进行反应堆压力容器全流域仿真计算及分流结构所在的下腔室流体仿真,采用变密度法SIMP拓扑优化方法进行结构优化,结合拉格朗日观点思想和非定常流场的流场仿真的结果,实现分流效果目标函数关于设计变量的灵敏度分析,推动目标函数向设定值逼近,继而使得结构向预定性能逼近,达成在已有约束下的最有材料分布和结构设计;本发明可以根据堆芯的能量分布对冷却剂分流结构进行拓扑优化设计,显著缩短结构设计周期,增强冷却剂的冷却效果,提升核反应堆的热利用率。

    用于浮动核电站的熔融物堆内滞留非能动冷却系统及方法

    公开(公告)号:CN111883269B

    公开(公告)日:2022-04-22

    申请号:CN202010807325.6

    申请日:2020-08-12

    IPC分类号: G21C15/18

    摘要: 本发明公开了用于浮动核电站的熔融物堆内滞留非能动冷却系统及其操作方法,系统包括船体、堆舱壁、压力容器、压力容器外部冷却系统和应急冷却器系统;压力容器和压力容器外部系统的主要部分设置于堆舱内,应急冷却器系统设置于堆舱壁和船体之间;当压力容器发生严重事故时,压力容器外部冷却系统淹没冷却压力容器的外壁面,应急冷却器系统通过传热管外侧流动的船体外部海水对传热管内侧循环流动的压力容器外部冷却系统冷却流体进行冷却。本发明实现压力容器外壁面快速非能动淹没冷却,将压力容器内熔融物热量有效导出,实现堆芯熔融物在压力容器内冷却与滞留,避免压力容器熔穿失效,极大缓解严重事故后果。