-
公开(公告)号:CN111977653B
公开(公告)日:2023-06-02
申请号:CN202010867241.1
申请日:2020-08-24
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C01B32/354 , C01B32/205 , H01G11/24 , H01G11/34
Abstract: 本发明公开了一种超级电容器用改性活性炭及其制备方法,属于活性炭材料生产改性及应用技术领域。该方法先通过金属盐高温催化在活性炭外表构筑石墨化外壳,再通过氧化改性使活性炭孔道掺氧,得到电子电导率和离子电导率同步提高的改性活性炭材料。本发明解决了活性炭电极材料电子电导率和离子电导率互为消长的技术难题,首次实现了两者的同步提升。本发明制备方法操作简单,可应用于同时对电子和离子电导率有要求的活性炭材料改性中。本发明改性活性炭用于超级电容器时的倍率性能、比电容量均有大幅提高,组装成超级电容器后,具有优异的循环稳定性,应用前景广阔。
-
公开(公告)号:CN110482546B
公开(公告)日:2022-12-02
申请号:CN201910752125.2
申请日:2019-08-15
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C01B32/324 , C01B32/336 , H01G11/24 , H01G11/34
Abstract: 一种储能活性炭及其制备方法。果壳炭化后破碎并置于回转炉中,无氧氛围下活化,通入水蒸气,保温后冷至室温,盐酸、蒸馏水依次洗涤,干燥后即得一级活化活性炭产品;一级活化活性炭产品破碎后置于回转炉中,无氧氛围下升温,通入水蒸气,保温后冷至室温,盐酸、蒸馏水依次洗涤,干燥后即得二级活化活性炭产品;二级活化活性炭产品破碎后置于回转炉中,无氧氛围升温,通入水蒸气,保温后冷至室温,盐酸、蒸馏水依次洗涤,干燥后即得三级活化活性炭产品。本发明生产过程安全环保无污染,后处理工序简单,适合工业化生产;制得产品灰分含量低、孔径分布合理、比表面积和比电容量大、倍率性能优异,各项指标性能均超过市售商品储能活性炭。
-
公开(公告)号:CN110575749B
公开(公告)日:2022-02-22
申请号:CN201910752118.2
申请日:2019-08-15
Applicant: 中国林业科学研究院林业新技术研究所 , 中国林业科学研究院林产化学工业研究所
Abstract: 一种吸附与可见光催化双功能复合材料及其制备方法和应用,步骤包括:(1)活性炭的水蒸气改性;(2)将精氨酸取代酞菁溶于溶剂中配制成溶液;(3)将一定质量步骤(1)的改性活性炭加入到步骤(2)的溶液中,室温搅拌一段时间后调节溶液pH为10;(4)过滤、洗涤,一定温度下干燥10 h即得吸附与可见光催化双功能复合材料。本发明通过活性炭与精氨酸酞菁光催化剂的协同作用,克服了活性炭吸附饱和后的二次污染,常规光催化光能利用率低、对低浓度VOCs光催化效果差的问题。本发明还涉及所述方法制备的复合材料在VOCs净化中的应用。
-
公开(公告)号:CN113575810A
公开(公告)日:2021-11-02
申请号:CN202110828879.9
申请日:2021-07-22
Applicant: 中国林业科学研究院林产化学工业研究所
Abstract: 本发明公开了一种微纳米化全竹笋饮品及其制备方法,所述方法为:将竹笋预处理后进行热提脱涩,之后经冷冻干燥后进行研磨破碎、超微粉碎与过滤分离成竹笋超微粉,之后与纯化水调配均匀后进行熟化处理,熟化后的物料进行一次均质,加入抗氧化剂、甜味剂与活性添加剂后进行二次均质,二次均质后灌装并经灭菌处理后制得微纳米化全竹笋饮品。本发明以新鲜竹笋为原料,经加工后制成的全竹笋饮品,纯天然,不含人工色素和防腐剂,脱去竹笋涩味、口感细腻、爽口柔滑,含有丰富的营养成分和膳食纤维,具有良好的保健功效,产品符合“营养化、功能化”定位,满足现代消费者需求,实现竹笋的高值化利用;同时,工艺简单,易于工业化生产。
-
公开(公告)号:CN113213477A
公开(公告)日:2021-08-06
申请号:CN202110640996.2
申请日:2021-06-09
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C01B32/342 , C01B32/324
Abstract: 本发明公开了一种高吸附性能秸秆活性炭的制备方法。将秸秆原料破碎、筛分后经过成型‑烘焙等致密化预处理,制得秸秆颗粒;秸秆颗粒经粉碎、筛分成适宜颗粒尺寸并去除部分杂质灰分,与质量分数为55%的磷酸活化剂按照一定比例均匀混合,采用热渗透活化工艺在一定温度下预活化一定时间后置于管式炉、在氮气保护下升温至一定活化温度活化,冷却至室温后,进一步通过离心洗涤脱灰后水洗至溶液pH为中性,干燥后即得低灰分、高比重、高吸附性能秸秆活性炭,得率47.24%,灰分4.12%、比重0.313g/mL,碘吸附值872mg/g,亚甲基蓝吸附值210mg/g,焦糖脱色率100%。
-
公开(公告)号:CN109336085B
公开(公告)日:2020-10-27
申请号:CN201811145744.7
申请日:2018-09-29
Applicant: 中国林业科学研究院林产化学工业研究所 , 中国林业科学研究院林业新技术研究所
Abstract: 木质素基炭纳米片储能材料及其制备方法和应用,将一定质量的硼酸在80℃的条件下溶解于50mL蒸馏水中,然后添加一定质量的木质素磺酸钠粉末并在该温度下不断搅拌直至溶剂蒸干,并继续将得到的样品放在80℃的烘箱中干燥12h;干燥后的样品放在管式炉炭化,最后将炭化后的样品用沸水将模板去除,干燥后得到木质素基炭纳米片。该方法绿色、简单、可持续,易于规模化生产;所制备得到的样品可以有效的控制其炭纳米片的厚度,作为超级电容器电极材料展现了良好的电化学性能,并且对于木质素这一生物质资源的充分利用具有重要的意义。
-
公开(公告)号:CN110713183A
公开(公告)日:2020-01-21
申请号:CN201910752162.3
申请日:2019-08-15
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C01B32/342 , C01B32/324
Abstract: 一种利用速生材加工剩余物制得的成型颗粒活性炭及其制备方法。速生材加工剩余物破碎过筛,物料与磷酸溶液充分混合,在100~200℃下捏合不超过90min,随后置于油压成型设备中,压成直径为4mm的柱状颗粒,挤出后的柱状颗粒在140℃下硬化2h,在300~600℃下保温0.5~2h进行炭活化,反应结束后冷至室温,蒸馏水漂洗至pH值为5-6,干燥后即得活性炭。本发明速生材加工剩余物预处理制备成型颗粒活性炭无需外加粘结剂,方法简单,节约成本;可同时实现成型颗粒活性炭的高吸附性和高强度。
-
公开(公告)号:CN110694609A
公开(公告)日:2020-01-17
申请号:CN201911020219.7
申请日:2019-10-25
Applicant: 中国林业科学研究院林产化学工业研究所
Abstract: 本发明公开了一种催化热解自活化原位合成炭基La2O3催化剂的方法及其产品,属于炭基催化材料的制备及应用技术领域。该方法将木质纤维生物质和镧的盐溶液真空浸渍,得到镧掺杂改性的木质纤维生物质;然后将镧掺杂改性的木质纤维生物质经过管式炉催化热解自活化和焙烧,得到多级孔炭基La2O3催化剂。该催化剂催化大豆油酯交换制备脂肪酸甲酯的得率达95%以上,催化活性为单一La2O3催化剂的5倍以上。利用本发明原位合成炭基La2O3催化剂,无需外加活化剂,掺杂的La可调控炭载体的微孔-介孔结构,并在介孔道中原位形成纳米氧化物,过程简便、环保,制得炭基催化剂的催化活性高。
-
公开(公告)号:CN109336085A
公开(公告)日:2019-02-15
申请号:CN201811145744.7
申请日:2018-09-29
Applicant: 中国林业科学研究院林业新技术研究所 , 中国林业科学研究院林产化学工业研究所
Abstract: 木质素基炭纳米片储能材料及其制备方法和应用,将一定质量的硼酸在80℃的条件下溶解于50mL蒸馏水中,然后添加一定质量的木质素磺酸钠粉末并在该温度下不断搅拌直至溶剂蒸干,并继续将得到的样品放在80℃的烘箱中干燥12h;干燥后的样品放在管式炉炭化,最后将炭化后的样品用沸水将模板去除,干燥后得到木质素基炭纳米片。该方法绿色、简单、可持续,易于规模化生产;所制备得到的样品可以有效的控制其炭纳米片的厚度,作为超级电容器电极材料展现了良好的电化学性能,并且对于木质素这一生物质资源的充分利用具有重要的意义。
-
公开(公告)号:CN104916452B
公开(公告)日:2018-06-19
申请号:CN201510192172.8
申请日:2015-04-21
Applicant: 中国林业科学研究院林产化学工业研究所
CPC classification number: Y02E60/13
Abstract: 本发明提供了一种超级电容器用木质活性炭复合材料及其制备方法,先将木质颗粒原料在氮气保护下炭化,炭化后洗涤烘干,碳化料与硝酸镍溶液混合浸渍后低温烘干。在惰性气氛下煅烧使硝酸镍转化成单质镍。煅烧结束后,冷却升温采用水蒸气进行镍催化活化反应。活化完成后,降温后向活化炉内通入空气,将单质镍转化成氧化镍反应充分后冷却,磨粉,得到超大比表面积且载有氧化镍的超级电容活性炭。本发明即利用了镍的催化活性制备出具有高比表面积活性炭,又利用镍氧化物的法拉第电容效应,得到具有高比表面积并载有镍氧化物的超级电容活性炭。无需进行镍的回收,并将镍转化成镍氧化物制备出超级电容活性炭复合材料。制备过程简单、高效、环保。
-
-
-
-
-
-
-
-
-