用于工业机器人的3D打印工具端装置

    公开(公告)号:CN110171134A

    公开(公告)日:2019-08-27

    申请号:CN201910525509.0

    申请日:2019-06-18

    IPC分类号: B29C64/209 B33Y30/00

    摘要: 本发明涉及一种用于工业机器人的3D打印工具端装置,包括主体结构和挤出头;主体结构具有多个侧安装面;挤出头内设置有多个自上而下的挤出通道,在底端合并为一个出料口,挤出头内插有加热棒;主体结构上部的侧安装面安装有多组由步进电机驱动的动力单元,主体结构下部的侧安装面安装有多个进料喉管;各个进料喉管的上端分别与对应的动力单元连接,下端分别接入对应的挤出头挤出通道。

    装配式钢结构墩柱与现浇混凝土桩基连接施工方法及构造

    公开(公告)号:CN117230789A

    公开(公告)日:2023-12-15

    申请号:CN202311173142.3

    申请日:2023-09-12

    IPC分类号: E02D5/52 E02D5/34 E01D19/02

    摘要: 本发明涉及一种装配式钢结构墩柱与现浇混凝土桩基连接施工方法及构造。现有连接施工需要承台过渡,导致开挖作业量大、施工材料用量大、施工工序较多。本方法于钢结构墩柱底部内侧布设竖向的开孔钢板及环向的贯穿钢筋;于贯穿钢筋外周侧绑扎竖向钢筋,并在竖向钢筋下部外露部分外侧绑扎箍筋;下放混凝土桩基的桩基钢筋笼,吊装钢结构墩柱于桩基钢筋笼上方,并将竖向钢筋与桩基钢筋笼绑扎为一体;立模浇筑桩基混凝土,桩顶段混凝土顶部浇至钢结构墩柱底部外以上。本发明取消了承台的设置,简化了连接构造,有效减少了施工过程中的工艺工序,施工方法便捷,施工效率高,有效降低混凝土、钢材、钢筋等材料消耗,经济性优势明显。

    组合式混凝土3D打印拱桥主拱圈结构及其建造方法

    公开(公告)号:CN116971262A

    公开(公告)日:2023-10-31

    申请号:CN202311093728.9

    申请日:2023-08-29

    摘要: 本发明涉及一种组合式混凝土3D打印拱桥主拱圈结构及其建造方法。混凝土3D打印中,材料逐层叠加累积成型,层间强度较弱,承载能力受到影响。本结构包括混凝土3D打印拱圈和混凝土后浇层,前者为混凝土3D打印预制件,后者为混凝土现浇件;混凝土3D打印拱圈由多块3D打印配筋拱块沿纵向拼接组成,拼接缝横向布置。本发明通过3D打印拱块和后浇混凝土组合成主拱圈结构,在打印件和现浇件中均布设钢筋并互相关联,3D打印配筋拱块的层间剪力为横向,与来自主拱圈纵向两端的剪力作用垂直,有效克服混凝土3D打印逐层叠加累积成型导致的打印构件层间和条间强度较弱的问题,打印成型后,承载能力不受影响。

    一种基于水泥基3D打印的薄壁构件建造方法

    公开(公告)号:CN116214665A

    公开(公告)日:2023-06-06

    申请号:CN202310056781.5

    申请日:2023-01-13

    摘要: 本发明公开了一种基于水泥基3D打印的薄壁构件建造方法,包括以下步骤:步骤S1、将水泥基材料放置到混凝土3D打印机的挤出设备内;所述挤出设备设置有第一温控系统,所述第一温控系统控制所述挤出设备内温度为10℃±5℃;步骤S2、根据薄壁构件的模型设置挤出设备的打印参数,通过3D打印技术在打印平台上由下到上逐层进行打印,形成初始构件;所述打印平台设置有第二温控系统,所述第二温控系统用于对所述打印平台上打印的所述水泥基材料进行温度控制;步骤S3、在打印平台上将初始构件在45℃±5℃下养护,得到薄壁构件。本发明的建造方法适用于任意温湿度环境、堆叠层数大于100层,堆叠高度1m以上的薄壁构件的打印,得到的打印构件结构稳定。

    一种3D打印建筑材料可打印性能的量化装置及其使用方法

    公开(公告)号:CN114102797B

    公开(公告)日:2023-01-31

    申请号:CN202111617316.1

    申请日:2021-12-27

    摘要: 本发明涉及一种3D打印建筑材料可打印性能的量化装置及其使用方法,该装置主要由三部分组成,分别为按压端头,活塞筒和变截面挤出嘴,其中活塞筒中设置有活塞杆及连接活塞杆的活塞,活塞杆的另一端与按压端头连接,变截面挤出嘴连接在活塞筒的底端,按压端头中设计有数显压力传感器。装置结构简单,成本低。通过使用时,将活塞筒中装入3D打印建筑材料,通过按压所述按压端头,活塞筒中的建筑材料被挤入变截面挤出嘴中,再从变截面挤出嘴的出料口排出,整个挤出过程中数显压力传感器可以显示压力。记录FB1、FB2并计算出FJ,通过三组数据能够进行量化分析,误差小,灵敏度大,操作简单。同时上机打印前,可对3D材料的可打印性能进行良好的预测。