-
公开(公告)号:CN103160659B
公开(公告)日:2015-05-20
申请号:CN201110410116.9
申请日:2011-12-12
Applicant: 东北大学 , 新疆众和股份有限公司
Abstract: 一种钳式紧凑型在线淬火系统,包括加热炉、噴射式 冷却装置,其特征在于:(一)加热炉采用可上下启闭、并能在垂直于挤压方向作水平移动的结构;(二)喷射式冷却装置也采用上下启闭、并能在垂直于挤压方向作水平移动的结构,而且喷射式冷却装置紧靠加热炉贴近挤压型材表面;(三) 另加有带牵引作用的多辊式导向装置。采用本发明的钳式紧凑型淬火系统,可确保在合金不发生“过烧”、固溶较充分的条件下,有效地缩短淬火转移时间和提高淬火冷却速度,使合金型材获得良好的淬火效果,并能降低挤压型材在线淬火过程发生弯曲和扭曲变形的程度,提高了型材的成材率和合格率,可产生突出的技术效果,实现了合金热挤压工艺中显著的技术进步。
-
公开(公告)号:CN103160659A
公开(公告)日:2013-06-19
申请号:CN201110410116.9
申请日:2011-12-12
Applicant: 东北大学 , 新疆众和股份有限公司
Abstract: 一种钳式紧凑型在线淬火系统,包括加热炉、噴射式冷却装置,其特征在于:(一)加热炉采用可上下启闭、并能在垂直于挤压方向作水平移动的结构;(二)喷射式冷却装置也采用上下启闭、并能在垂直于挤压方向作水平移动的结构,而且喷射式冷却装置紧靠加热炉贴近挤压型材表面;(三)另加有带牵引作用的多辊式导向装置。采用本发明的钳式紧凑型淬火系统,可确保在合金不发生“过烧”、固溶较充分的条件下,有效地缩短淬火转移时间和提高淬火冷却速度,使合金型材获得良好的淬火效果,并能降低挤压型材在线淬火过程发生弯曲和扭曲变形的程度,提高了型材的成材率和合格率,可产生突出的技术效果,实现了合金热挤压工艺中显著的技术进步。
-
公开(公告)号:CN114395714A
公开(公告)日:2022-04-26
申请号:CN202111567006.3
申请日:2021-12-20
Applicant: 东北大学
Abstract: 本发明公开了一种超高强Co基中熵合金及其制备方法,通过设计元素配比和制备工艺,开发了一种超高强度和塑性优异的新型Co基中熵合金体系。该合金制备工艺:利用真空电弧熔炼炉将成分配比好的合金进行反复多次熔炼,制备成多晶铸锭。利用高真空喷铸炉将合金块体吸铸进Cu模里,形成致密合金板材;在900~950℃下进行热轧,轧下量为50%;将热轧后的样品在1200~1250℃下均匀化退火2h。随后冷轧60%,最后850~900℃退火再结晶3~4min。其中Co66.66Cr16.67V16.67合金的屈服强度为1200MPa,延伸率为20.7%,极限抗拉强度为1420.7MPa。本发明公开了一种力学性能优异的新型中熵合金体系,扩大了中熵合金的研究范围。
-
公开(公告)号:CN112375956A
公开(公告)日:2021-02-19
申请号:CN202011268191.1
申请日:2020-11-13
Applicant: 东北大学秦皇岛分校
Abstract: 一种高强度NiMnIn合金及其制备方法和应用,所属冶金技术领域,合金元素成分为Ni:48~52at%、Mn:35.5~39.5at%和In:10.5~14.5at%;制备方法包括原料预处理、烧结、后处理步骤。本发明制备方法以成分均匀的合金粉末为原料,通过放电等离子烧结(SPS)技术制备出高致密的块状合金,从而获得高强度且可机加工的Ni‑Mn基合金;合金的力学性能得到了极大的改善,可机加工成任意形状,以满足实际应用的要求,从而实现良好的功能特性,应用于制备磁驱动、磁传导和磁制冷的零部件。
-
公开(公告)号:CN108866421B
公开(公告)日:2020-02-11
申请号:CN201810739581.9
申请日:2018-07-06
Applicant: 东北大学
Abstract: 本发明属于材料成型及磁控溅射合金靶材的制备工艺技术领域,提供了一种Ni‑Mn‑Sb合金材料及其放电等离子烧结制备方法。本发明的制备工艺包括以下步骤:按照原料配比称取Ni、Mn、Sb原料,利用真空电弧多次反复熔炼,制备多晶铸锭,经过研磨仪研磨成粉,置于石墨磨具中,在放电等离子烧结系统中的真空环境下进行烧结:升温速度为30~100℃/min,压力为40~80MPa,烧结温度为600~950℃,保温时间为5~20分钟。本发明工艺简单,所制备的Ni‑Mn‑Sb合金具有优良的力学性能。
-
公开(公告)号:CN107881394B
公开(公告)日:2019-08-09
申请号:CN201711209823.5
申请日:2017-11-28
Applicant: 东北大学
Abstract: 一种Ni‑Co‑Mn‑In‑Ge磁制冷合金材料及制备方法,属于磁性制冷材料技术领域。所述Ni‑Co‑Mn‑In‑Ge磁制冷合金材料的化学分子式为Ni45Co5Mn36.5In13.5‑xGex,合金中元素的摩尔数之和为100,其中1≤x≤4。本发明通过原料配比、真空电弧多次反复熔炼,制备多晶铸锭,在高纯惰性气体保护下退火,然后迅速水冷,从而制备出Ni‑Co‑Mn‑In‑Ge磁制冷合金块体坯料。本发明的合金块体在1.5T外加磁场下,通过升温磁化的方式得到绝热温变变化范围为1.34‑2.69K。本发明的磁性合金材料能够在室温附近能够获得较大的绝热温变,伴随有巨大的磁热效应,可作为宽温域工作范围的一种磁制冷工质。
-
公开(公告)号:CN110066948A
公开(公告)日:2019-07-30
申请号:CN201910353437.6
申请日:2019-04-29
Applicant: 东北大学
Abstract: 本发明的高强高塑性Mg-Ca-Al-Zn-Mn-Ce变形镁合金及其制备方法,属于变形镁合金材料领域。变形镁合金组分按质量百分比为:钙:0.50~3.20%;铝:0.30~3.50%;锌:0.10~1.00%;锰:0.10~3.00%;铈:0.10~0.50%,余量为镁和不可避免的杂质。制备方法为:先熔化纯镁铸锭,充分熔化后,再加入金属钙、铝、锌、铈、锰等,充分搅拌之后浇铸成铸锭,随后进行铸锭的均匀化处理,经过反向挤压工艺挤压得出相应的挤压型材,通过熔炼、均匀化处理及后续挤压(反向挤压)工艺制备出了高强高塑性Mg-Ca-Al-Zn-Mn-Ce变形镁合金,其强度和韧性得到增强,有较好的力学性能。
-
公开(公告)号:CN109957693A
公开(公告)日:2019-07-02
申请号:CN201910238157.0
申请日:2019-03-27
Applicant: 东北大学
Abstract: 一种高锶高铝含量的铸造镁基复合材料,所述镁基复合材料的组分以质量百分比计为:Sr:2.00~35.00%;Al:3.00~25.00%;Ca:0.00~3.00%;Ba:0.00~8.00%;Zn:0.00~8.00%;Mn:0.00~5.00%;Sn:0.00~8.00%,其余为Mg和杂质。制备方法包括如下步骤:(1)准备材料;(2)铸锭熔炼。本发明的有益效果是:本发明提出的镁基复合材料原料均为价格较为低廉的金属及合金,具有一定的成本优势。本发明形成的增强体为原位自生增强体,且分散均匀。本发明Sr、Al元素含量较高,形成共晶组织,共晶组织相组成为α‑Mg及Mg17Sr2、Al2Sr、Al4Sr相,利用Al2Sr相兼具强塑性,并与镁基体界面结合良好的特点,制备高性能复合材料。本发明采用普通铸造,工艺流程简单,通过调控成分来调控共晶组织含量及形貌,进一步提高性能。
-
公开(公告)号:CN108677078A
公开(公告)日:2018-10-19
申请号:CN201810576924.4
申请日:2018-05-30
Applicant: 东北大学
Abstract: 本发明属于磁制冷合金材料及其合金的制备工艺技术领域。该材料本身在室温附近能够获得优异的绝热温变,是理想的近室温磁制冷工质。所述富Mn的Mn‑Ni‑In‑Co‑Cu磁制冷合金材料的化学分子式为MnxNi37In9Co4Cuy,合金中元素的摩尔数之和为100,其中46≤x≤49,1≤y≤4。本发明通过原料配比、真空电弧多次反复熔炼,制备多晶铸锭,在高纯惰性气体保护下退火,然后迅速水冷,从而制备出富Mn的Mn‑Ni‑In‑Co‑Cu磁制冷合金块体坯料。本发明的合金块体在3T磁场下,磁熵变变化范围为4.4~15.8JKg‑1K‑1。
-
公开(公告)号:CN108265245A
公开(公告)日:2018-07-10
申请号:CN201810182525.X
申请日:2018-03-06
Applicant: 东北大学
Abstract: 一种汽车车身用6009铝合金板材的制备方法,包括以下步骤:(1)制备6009铝合金铸锭;(2)将6009铝合金铸锭加热至200~400℃,保温2~6h;随后升温至460~500℃,保温2~4h后出炉热轧;(3)加热至480~550℃,保温2~6h随炉冷却;(4)冷轧制得冷轧板;(5)固溶处理;(6)室温放置5~30min;(7)预时效处理;(8)对预时效处理后轧板,进行室温放置4周以上,制得汽车车身用6009铝合金板材。本发明的方法能够显著缩短6009铝合金车身板的生产流程、节约能源、大幅度降低生产成本并且可以同时提高合金板材的冲压成形性和烘烤硬化性。
-
-
-
-
-
-
-
-
-