一种基于机器学习的超声随访患者筛选方法

    公开(公告)号:CN111524570B

    公开(公告)日:2024-01-16

    申请号:CN202010371381.X

    申请日:2020-05-06

    Abstract: 本发明提供了一种基于机器学习的超声随访患者筛选方法。由于深度学习技术的快速发展,利用自然语言处理技术和深度学习技术成为了分析医疗文本的重要手段,是替代人工筛查文本的有效途径。本发明通过JIEBA分词工具对文本内容进行分词,并采用TF‑IDF方法和Word2Vec算法分别构建词向量,进一步利用卡方检验方法对特征向量进行选择。分类模型选择XGBoost、Lightgbm和CNN对特征数据进行训练建模,实现了对超声检查随访列表的自动筛选。(56)对比文件王根生;黄学坚.基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型.小型微型计算机系统.2019,(第05期),全文.常炳国;刘清星.基于深度学习的慢性肝病CT报告相似度分析.计算机应用与软件.2018,(第08期),全文.丁尚伟;谢玉环;陈俊君;陈沛芬;何志忠;罗海波.数字化病例随访系统在超声医师规范化培训中的应用.南方医学教育.2018,(第01期),全文.

Patent Agency Ranking