一种基于机器学习的超声随访患者筛选方法

    公开(公告)号:CN111524570B

    公开(公告)日:2024-01-16

    申请号:CN202010371381.X

    申请日:2020-05-06

    Abstract: 本发明提供了一种基于机器学习的超声随访患者筛选方法。由于深度学习技术的快速发展,利用自然语言处理技术和深度学习技术成为了分析医疗文本的重要手段,是替代人工筛查文本的有效途径。本发明通过JIEBA分词工具对文本内容进行分词,并采用TF‑IDF方法和Word2Vec算法分别构建词向量,进一步利用卡方检验方法对特征向量进行选择。分类模型选择XGBoost、Lightgbm和CNN对特征数据进行训练建模,实现了对超声检查随访列表的自动筛选。(56)对比文件王根生;黄学坚.基于Word2vec和改进型TF-IDF的卷积神经网络文本分类模型.小型微型计算机系统.2019,(第05期),全文.常炳国;刘清星.基于深度学习的慢性肝病CT报告相似度分析.计算机应用与软件.2018,(第08期),全文.丁尚伟;谢玉环;陈俊君;陈沛芬;何志忠;罗海波.数字化病例随访系统在超声医师规范化培训中的应用.南方医学教育.2018,(第01期),全文.

    基于多标准主动学习的乳腺电子病历实体识别系统

    公开(公告)号:CN111222340A

    公开(公告)日:2020-06-02

    申请号:CN202010041673.7

    申请日:2020-01-15

    Abstract: 本发明涉及一种基于多标准主动学习的乳腺电子病历实体识别系统,其特征在于,包括:预处理模块;实体识别模块;主动学习模块。本发明从标注数据量、句子标注成本、数据采样均衡性三个方面进行考虑,设计了针对文本序列标注的主动学习选择策略以减少标注总工作量。本发明一方面可用于建设乳腺疾病风险患者识别标记、疾病药物推荐、辅助决策诊断等系统,帮助医生提高乳腺疾病规范化诊疗的执行效率,予以科学的依据和建议方案;另一方面,还可以协助医生发现诊疗过程中潜在的非正常情况,降低误诊和漏诊率,提高乳腺疾病患者的治愈几率,对乳腺疾病研究的智能化发展具有重要价值。

Patent Agency Ranking