输入饱和的自动驾驶汽车路径跟踪控制方法

    公开(公告)号:CN111176302A

    公开(公告)日:2020-05-19

    申请号:CN202010145290.4

    申请日:2020-03-04

    Abstract: 一种输入饱和的自动驾驶汽车路径跟踪控制方法,通过设计鲁棒H∞路径跟踪控制器,解决了自动驾驶汽车路径跟踪控制的网络时延和输入饱和问题,提高了车辆在极端行驶条件下的路径跟踪性能。通过对车辆侧向速度和横摆角速度的调节,在实现自动驾驶汽车路径跟踪控制的同时提高了车辆的操作稳定性。自动驾驶汽车鲁棒H∞路径跟踪控制增益矩阵可以通过求解线性矩阵不等式得到,计算简便。该路径跟踪控制设计综合考虑了车辆动力学模型的不确定性和外界扰动的影响,提高了路径跟踪控制算法的鲁棒性。通过设计静态输出反馈控制器,在实现理想的路径跟踪控制的同时,大大降低了控制系统的成本。

    基于多尺度小波变换的心电图波形的形态识别方法

    公开(公告)号:CN110547786B

    公开(公告)日:2020-05-05

    申请号:CN201810555348.5

    申请日:2018-06-01

    Abstract: 一种基于多尺度小波变换的心电图波形的形态识别方法,通过本基于多尺度小波变换的心电图波形的形态识别方法,相对于传统的心电图识别,本发明可以更精准的定位峰值位置和范围所在,通过本融合算法可以有效减少由于选择检测尺度不当或是P/T形态多变条件下检测P/T波所造成的损失。特别是对P/T波异常的心电图有更好的检测效果。本发明算法具有容错性高、精确度高等特点,特别是在P/T波检测中,可以有效避免由于P/T波能量集中频率不一致造成的错检和漏检,有效减少因检测不当所造成的误诊等情况。

    构建CNN-GB模型的方法及系统、数据特征分类方法

    公开(公告)号:CN109359610A

    公开(公告)日:2019-02-19

    申请号:CN201811257725.3

    申请日:2018-10-26

    Abstract: 本发明公开了构建CNN-GB模型的方法及系统、数据特征分类方法,属于人工智能BCI技术领域,解决的问题是如何结合CNN模型和GB算法对脑电信号进行特征提取与分类识别,得到效能高的最优特征集,使其分类精确度高。其方法包括采集脑电数据;基于Caffe深度学习框架构建CNN网络模型;训练CNN网络模型;训练GB网络模型。其系统包括脑电数据采集模块、CNN网络配置模块和GB网络配置模块。其分类方法包括采集脑电数据;获得训练后的CNN网络模型和训练后的GB网络模型;由训练后的CNN网络模型对脑电数据进行特征提取,由训练后的GB网络模型对提取的特征进行分类。结合CNN模型和GB算法提高了分类精确度。

    一种基于LTI滤波与稀疏优化原理的ECG信号恢复方法

    公开(公告)号:CN108992060A

    公开(公告)日:2018-12-14

    申请号:CN201810568552.0

    申请日:2018-06-05

    Abstract: 本发明公开一种基于LTI滤波与稀疏优化原理的ECG信号恢复方法,先将原始信号进行LTI滤波处理,本发明中选用LTI中的低通滤波进行相应处理,然后通过稀疏优化原理进行信号处理,最后合并形成我们所需要的去除噪音后的信号。在此过程中,通过低通滤波处理的信号能够快速滤除大部分高频噪音,但会对心电的形状发生改变,Q、S等波段会被削平。然后进行稀疏信号优化处理,得到原有波峰波谷信息并去除其他噪音,保证ECG信号的真实性,即在充分抑制ECG中的噪音的同时保护信号细节。

Patent Agency Ranking