-
公开(公告)号:CN100489523C
公开(公告)日:2009-05-20
申请号:CN200510010203.X
申请日:2005-07-20
Applicant: 哈尔滨工业大学
Abstract: 密封电磁继电器多余物微粒的复合检测系统,它具体涉及继电器内部多余物的检测方法,它的目的是为了解决现有的马特拉方法检测效率低,无法测定存在于密封电磁继电器衔铁与极面之间的多余物微粒及无法进一步分析多余物微粒对继电器造成的危害程度的问题。本发明的3的控制信号输出端连接4的信号输入端,3的测量数据输入端连接5的测量数据输出端,4的多路控制信号输出端连接6、7和8,6的触发信号输出端连接5,7的测量数据输出端连接5,8的测量数据输出端连接5。本发明利用测试动态参数能有效地检测出存在于密封电磁继电器衔铁与极面之间的多余物微粒,并根据动态参数序列来判定多余物的大小及它对密封电磁继电器功能造成的危害程度。
-
公开(公告)号:CN101294590A
公开(公告)日:2008-10-29
申请号:CN200810064741.0
申请日:2008-06-16
Applicant: 哈尔滨工业大学
IPC: F15B13/02
Abstract: 本发明提供了一种三级电液伺服阀应急保护装置。它包括二位三通换向阀、推力活塞、顶杆和强力弹簧,二位三通换向阀安装在用于安装三级电液伺服阀的阀块上;推力活塞、顶杆和强力弹簧安装在三级电液伺服阀的左端盖上。本发明可用于系统故障保护,能够有效提高系统安全性,结构简单、实现方便、性能可靠,保护及时,可以用在许多使用了三级电液伺服阀的大型设备中,如多自由度运动模拟器、振动试验台等。
-
公开(公告)号:CN101192058A
公开(公告)日:2008-06-04
申请号:CN200610151074.0
申请日:2006-11-27
Applicant: 哈尔滨工业大学
IPC: G05B19/048 , G06F11/00
Abstract: 本发明创造提供了一种在毫秒级时间内即能判断出实时控制计算机的运行状态,并在计算机系统发生异常时驱动报警并实施保护,使实时控制系统的运行更加安全的毫秒级实时计算机系统监控装置。它包括标准时钟方波发生电路、波形频率整理电路、移位电路、锁存电路和用于检测实时计算机系统工作的系统运行心跳信号检测电路,其中标准时钟方波发生电路连接波形频率整形电路,波形频率整形电路连接移位寄存器,移位寄存器连接锁存电路,实时计算机系统检测电路连接移位寄存器,锁存电路连接六自由度运动模拟器保护回路。本发明创造可用于检测实时计算机系统的正常工作状态,在系统程序出现异常情况下,驱动保护装置实施保护。
-
公开(公告)号:CN100375902C
公开(公告)日:2008-03-19
申请号:CN200410043965.5
申请日:2004-10-22
Applicant: 哈尔滨工业大学
IPC: G01R31/327 , G01R31/00
Abstract: 电磁继电器动态特性的测试方法。它涉及用于测试并记录电磁继电器衔铁运动特性的方法。步骤:一、用照明装置(2)照射在衔铁(1)表面,反射出来的光线投射在成像装置(4)的表面上,在图像传感器(5)上成像;二、把(5)所提取的信号经过A/D转换后存储;三、给电磁继电器(11)通电使(1)运动,采集并记录(1)在各运动位置的数据信号;四、把(1)各运动位置的数据信号进行去噪、滤波和增强等处理;五、把(1)各运动位置的数据信号拟合成完整的运动特性曲线。本方法不在继电器上附加任何辅助测量工具,属于真正的非接触测量;通过软件对图像进行去噪、滤波、图像增强和阈值选取等操作,更有利于将有用信号提取出来。
-
公开(公告)号:CN101008675A
公开(公告)日:2007-08-01
申请号:CN200610151148.0
申请日:2006-12-15
Applicant: 哈尔滨工业大学
IPC: G01S15/08
Abstract: 超声波测量距离的方法及装置,它涉及到一种距离测量的方法及装置。本发明解决了目前的超声波测量距离的方法中存在的由于对回波起振点确认不准确而导致的测量精度低的问题。本发明的超声波测量距离的方法包括发送测量信号;接收回波信号;回波信号的滤波放大处理;对放大的回波信号的A/D转换及转换结果存储;对检波信号和峰值信号进行比较处理;根据比较结果,停止A/D采样;分析存储的A/D转换结果数据,寻找回波起振点;根据A/D转换速度,计算回波起振点的时间,进而得到测量距离。本发明超声波测量距离的方法及装置能够应用到各种超声波测量距离的领域中。
-
公开(公告)号:CN1804333A
公开(公告)日:2006-07-19
申请号:CN200610009648.0
申请日:2006-01-20
Applicant: 哈尔滨工业大学
Abstract: 带过渡区的混凝土及预应力混凝土梁,它涉及一种土木工程中的混凝土结构。本发明由第一混凝土或预应力混凝土梁(1)、第二混凝土或预应力混凝土梁(2)和过渡区(3)组成,第一混凝土或预应力混凝土梁(1)和第二混凝土或预应力混凝土梁(2)平行相向错位设置,过渡区(3)与第一混凝土或预应力混凝土梁(1)的端头(1-1)和第二混凝土或预应力混凝土梁(2)的端头(2-1)连接为一体。本发明的有益效果是:通过过渡区将其两侧错位梁段连为一体作为一根梁受力,由于将错位布置的错位梁作为主梁来使用,降低了混凝土平面体系的结构高度,使混凝土平面体系受力合理,降低造价,改善使用功能;可通过过渡区实现预应力混凝土梁中预应力筋的跨内张拉,为无法或难以实现在梁端张拉预应力筋的预应力混凝土梁的实施创造了条件。
-
公开(公告)号:CN112666605B
公开(公告)日:2021-11-26
申请号:CN202110068353.5
申请日:2021-01-19
Applicant: 哈尔滨工业大学
Abstract: 基于主成分分析和多目标遗传算法挑选地震动的方法,本发明涉及一种应用机器学习挑选地震动的方法。挑选地震动的方法:一、确定地震信息;二、应用机器学习中的主成分算法提取数据库中的地震动数据;三、将地震信息输入到地震动预测模型中,得到目标场地的条件均值谱;四、将地震信息输入到地震动持时的预测模型中;五、根据结构自振周期将条件均值谱分为三段;六、确定地震动持时误差;七、通过多目标遗传算法以步骤五和步骤六为约束条件,确定一组组合系数使误差最小,即为挑选的地震动。本发明将机器学习中主成分和多目标遗传算法引入到地震动挑选中,解决基于调幅得到的地震动的不确定性。
-
公开(公告)号:CN105068244B
公开(公告)日:2018-09-07
申请号:CN201510517575.5
申请日:2015-08-22
Applicant: 哈尔滨工业大学
IPC: G02B26/08
Abstract: 一种通过DMD拼接实现的分辨率提高的方法。本发明属于提高DMD分辨率的技术领域。它的方法步骤一、在计算机上将4k×4k的图像通过图像分割的方法分为4k×2k、4k×2k两部分;二、将DMD1芯片放置在双层固定台的底层固定台上的滑动导轨上,DMD2芯片固定放置在双层固定台的上层固定台上;三、DMD控制芯片将上述两部分图像信号进行处理后,将上述两部分4K×2K的图像分别同时传输到DMD1芯片和DMD2芯片中;四、通过高分辨率CCD相机对DMD1芯片像素和DMD2芯片像素成像,再通过精确位置移动平台能驱动DMD1芯片做相对于双层固定台的底层固定台台面做精密平行位移,使DMD1芯片边缘像素与DMD2芯片边缘像素之间的距离达到标称值。本发明能实现将两块DMD芯片像无缝拼接,大幅度提高DMD芯片的分辨率。
-
公开(公告)号:CN107192979A
公开(公告)日:2017-09-22
申请号:CN201710365986.6
申请日:2017-05-23
Applicant: 哈尔滨工业大学(威海)
IPC: G01S5/06
CPC classification number: G01S5/06
Abstract: 一种最大似然定位计算中的不确定性分析方法,涉及最大似然定位计算过程中的不确定性分析。本发明是为了有效解决最大似然定位计算过程中的不确定性敏感性分析和综合问题。本发明所述的一种最大似然定位计算的不确定性敏感分析方法,首先构建定位网络,测量最大似然定位计算中各个距离估计的不确定性;然后采用偏微分的方法计算各个不确定性因素的敏感因子,评估各个不确定性因素的不确定性对定位结果的影响程度,为改善最大似然定位精度的方法提供支持;最后对不确定性进行综合,获得最大似然定位计算结果的不确定度,以此评估定位计算结果的质量,也为导航等后续处理方法提供参考和决策信息。
-
公开(公告)号:CN107124700A
公开(公告)日:2017-09-01
申请号:CN201710368739.1
申请日:2017-05-23
Applicant: 哈尔滨工业大学(威海)
CPC classification number: H04W4/023 , G01S5/0257 , G01S5/14 , G01S5/30 , H04W4/025 , H04W64/003
Abstract: 一种基于TDOA通信距离估计的不确定性分析方法,涉及基于TDOA无线通信距离估计过程中的不确定性分析。本发明是为了有效解决基于TDOA通信距离估计过程中的不确定性敏感性分析和传播问题。本发明所述的一种基于TDOA通信距离估计的不确定性分析方法,首先分析距离估计过程中的不确定性因素,采用偏微分的方法获得不确定性因素的敏感因子;然后测量基于TDOA通信距离估计中传输时间差测量的不确定性,从而评估传输时间测量不确定度对距离估计结果的影响程度,为改善通信距离估计精度方法提供支持;最后,计算传输时间差测量值的不确定性传播到距离估计结果的影响,并以此来评估通信距离估计的质量,也为后续处理方法提供质量评估参考。
-
-
-
-
-
-
-
-
-