-
公开(公告)号:CN103253661A
公开(公告)日:2013-08-21
申请号:CN201310200469.5
申请日:2013-05-27
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B31/04
Abstract: 本发明涉及一种低成本且能大规模制备高质量石墨烯粉体的方法,为将石墨加入到含有氧化剂和插层剂的混合溶液中,搅拌均匀后超声处理,同时持续通入He,形成插层剂和He气分子插层的石墨插层化合物;然后过滤、洗涤、干燥,并在空气中热处理实现石墨插层化合物首次剥离;之后分散于有机溶剂中,持续通入He条件下再次超声处理;然后离心去掉沉淀,取上层溶液进行过滤、洗涤、烘干后即得到石墨烯粉体;本发明的方法安全环保、操作简单,适合大规模生产,制得的石墨烯缺陷少,导电性好。
-
公开(公告)号:CN102901662A
公开(公告)日:2013-01-30
申请号:CN201210408958.5
申请日:2012-10-23
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种基于永磁铁和自动传输装置的样品极化系统,其特征在于包括永磁铁、自动传输装置、连接杆、导轨和盛放样品的小车,所述的导轨一端位于所述的永磁铁中心,另一端位于样品极化后进行物理化学性能测试的测点;所述的连接杆连接小车和自动传输装置;所述的自动传输装置可带动连接杆和小车在导轨中自动做平行往复运动。样品在永磁铁中心极化,在测点进行物理化学性能测试。通过设置自动传输装置,以在永磁铁中心和测点之间的距离内可改变极化时间、传输时间、传输速度和加速度。本发明在基于SQUID的极低场核磁共振及其成像等应用中有很好的应用前景。
-
公开(公告)号:CN101923152B
公开(公告)日:2012-11-14
申请号:CN201010212971.4
申请日:2010-06-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R35/00 , G01R33/022
Abstract: 本发明公开了一种梯度计等效误差面积系数的标定方法:利用螺线管产生一定频率的均匀磁场,由于误差面积的存在,该磁场在梯度线圈中产生一定频率的电压信号,利用锁相放大原理进行微弱信号的提取,理论计算和实验相结合,实现面积误差系数的标定。基于以上简述,本方法主要包括三个部分:(1)梯度计感应电动势理论计算;(2)实验系统搭建及测量;(3)梯度计等效误差面积系数计算。相对于传统的低温标定方法,本方法基于室温,有效地降低了标定成本,提高了标定效率,为高平衡度梯度计的选择提供了有效的技术途径。
-
公开(公告)号:CN102703988A
公开(公告)日:2012-10-03
申请号:CN201210174733.8
申请日:2012-05-31
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于离子注入技术打开石墨烯带隙的方法,包括如下步骤:1)将石墨烯放置在Si片上,然后放入离子注入机中,用离子束轰击所述Si片上的石墨烯,使其产生缺陷;2)将步骤1)中经过离子束轰击后的有缺陷的石墨烯于合适的气氛中进行退火处理。该方法首先用离子注入技术轰击石墨烯表面,使其表面产生缺陷(空位),然后选择在合适的气体气氛中退火,完成N型或者P型掺杂,从而打开带隙。实现了石墨烯的掺杂并改善了其开关特性。
-
公开(公告)号:CN101894906B
公开(公告)日:2012-07-04
申请号:CN201010202118.4
申请日:2010-06-13
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L39/24
Abstract: 本发明公开了一种超导台阶结的制备方法,其特征在于采用高温超导单晶代替超导薄膜,将超导单晶通过连续剥离的方法实现厚度为几十到几百纳米厚的超薄单晶,再将所述的超薄单晶附着于台阶衬底之上;利用台阶衬底和超导单晶之间的强互相吸引力,使所述的超薄超导单晶紧密附着于衬底之上,使所述的超薄超导单晶在衬底台阶附近呈现台阶结构,最后再利用微加工工艺构造微桥结构,成为一定宽度的超导台阶结。包括以下步骤:1)台阶衬底制备;2)超导单晶薄片的剥离并吸附于台阶衬底;3)保护和选择;4)台阶结制备。本发明无需复杂的薄膜生长工艺,采用非常少量的超导单晶即可实现;单晶材料的超导性能要比薄膜材料好。
-
公开(公告)号:CN102426343A
公开(公告)日:2012-04-25
申请号:CN201110254091.8
申请日:2011-08-31
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035
Abstract: 本发明涉及一种基于SQUID偏置电压反转的读出电路及低频噪声的抑制方法,其特征在于通过偏置反转电路,实现偏置反转,从而抑制低频噪声的产生,具体是所述的读出电路是由SBC构型SQUID低温部分和偏置反转读出电路两部分构成。抑制方法主要过程包括:(1)放大器输入偏置电压调整;(2)交流方法偏置电压加在;(3)磁通相位调整与直流磁通补偿;(4)载波消除;(5)积分反馈输出。本发明所涉及的电路结构相对简单,便于多通道集成,可广泛应用于生物磁、物探等低频测量。
-
公开(公告)号:CN102048541A
公开(公告)日:2011-05-11
申请号:CN201010544324.3
申请日:2010-11-15
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: A61B5/055
Abstract: 本发明涉及一种应用于心磁图仪测量的无磁三维机械传动机构,其特征在于所述的传动机构分为杜瓦的支撑架和无磁床两部分,支撑架内部使用齿条和定滑轮实现竖直方向的移动;无磁床分为三层结构,最下一层是底座,中间一层和上面一层使用齿轮、齿条传力以及涡轮、涡杆变向实现前后、左右二维移动。支撑架和无磁床使用激光切割的层压板啮合组装,传动装置使用尼龙、陶瓷和环氧树脂加工而成,不含任何金属部件;外形美观,结构坚固。整个机构不会对环境磁场和心脏磁场分布产生任何影响,在心磁测量中具有广泛的应用。
-
公开(公告)号:CN111430396B
公开(公告)日:2024-06-11
申请号:CN202010167335.8
申请日:2020-03-11
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L27/148 , B82Y10/00
Abstract: 本申请涉及一种基于超导纳米线的单光子偏振探测器件及其实现装置,包括:衬底;像元层,像元层置于衬底上;其中,像元层包括一个或多个超像元单元;每个超像元单元包括至少四个像元单元,像元单元由一条蜿蜒曲折的超导纳米线构成;且每个像元单元的超导纳米线结构的平行方向的角度各不同;利用四个超像元对偏振光的偏振角的光响应计数可以实现对线性偏振光的偏振态求解。与现有的半导体偏振探测器相比,本申请中的超导纳米线结构具有线偏振器和光子探测器的双重功能,不仅集合了超导纳米线结构单光子探测器自身的优点,还具有器件规模可拓展、结构简单等特点,有望应用于微弱光环境下的偏振探测及成像、量子通信、天文观测等。
-
公开(公告)号:CN114525581B
公开(公告)日:2023-10-20
申请号:CN202210129361.0
申请日:2022-02-11
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种双层30度扭角石墨烯单晶晶圆的制备方法,其包括提供300‑800nm厚的铜镍单晶衬底,该铜镍单晶衬底中镍原子占原子总数的15‑22%;放入化学气相沉积炉中,在氩气和氢气比为(100‑300sccm):(5‑15sccm)的气体氛围和1050℃‑1100℃的温度下退火;然后在氩气、氢气和甲烷比为(100‑300sccm):(5‑15sccm):(0.025‑0.5sccm)的气体氛围和1050℃‑1100℃的温度下进行生长得到双层30度扭角石墨烯单晶晶圆。根据本发明的制备方法,采用铜镍单晶薄膜作为衬底,结合退火阶段和生长阶段可以得到大尺寸晶圆级的双层30度扭角石墨烯单晶晶圆。
-
公开(公告)号:CN109633541B
公开(公告)日:2023-08-11
申请号:CN201910061772.9
申请日:2019-01-23
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种磁源定位装置及磁源定位方法,所述磁源定位装置包括:安装支架,用于提供安装平台;全张量磁梯度测量组件,设于安装支架上,用于测量待定位磁源在全张量磁梯度测量组件处产生的磁场梯度值;位置定位器,刚性连接于全张量磁梯度测量组件,用于测量全张量磁梯度测量组件在地理坐标系下的位置信息;测控组件,电连接于全张量磁梯度测量组件及位置定位器,用于采集磁场梯度值及位置信息,并根据采集的数据对待定位磁源进行定位;运动载体,设于安装支架下方,用于载运安装支架进行位置移动,以实现全张量磁梯度测量组件的位置移动。通过本发明解决了现有定位方法中存在虚解或受基线长度限制而无法实现长距离高精度定位的问题。
-
-
-
-
-
-
-
-
-