-
公开(公告)号:CN119037731B
公开(公告)日:2025-05-13
申请号:CN202411202142.6
申请日:2024-08-29
Applicant: 哈尔滨工业大学
Abstract: 一种可折叠展开的卫星桅杆及其制备方法和应用,属于航空航天领域,具体方案如下:一种可折叠展开的卫星桅杆,包括碳纤维管,碳纤维管由碳纤维布和形状记忆树脂复合而成;碳纤维管上开设若干对长圆孔缝隙,每对有两个长圆孔缝隙,对称布置在碳纤维管的侧壁上,若碳纤维管包括单层碳纤维布或双层碳纤维布,相邻两对长圆孔缝隙所在的平面之间的角度θ满足0<θ<180,即得可折叠展开的卫星桅杆;若碳纤维管的一半侧壁为单层碳纤维布,另一半侧壁为双层碳纤维布,相邻两对长圆孔缝隙所在的平面之间的角度θ满足θ=0或90°,即得可折叠展开的卫星桅杆。本发明所设计的卫星桅杆可以显著提高航天器的空间利用率。
-
公开(公告)号:CN119427495A
公开(公告)日:2025-02-14
申请号:CN202411661243.X
申请日:2024-11-20
Abstract: 一种模块化光固化3D打印陶瓷的方法,它涉及光固化陶瓷的3D打印方法。它是要解决现有的方法无法实现对于陶瓷件的分块3D打印的问题,本方法:在电脑上使用软件将目标大尺寸结构陶瓷的3D模型拆分为互相连接的模块后,并将3D模型导入DLP打印机;再利用与各模块相对应的陶瓷浆料进行DLP打印得到各模块,将各模块清洗晾干后,将乙酸正丁酯涂在各模块之间的连接界面上,施加压力使模块连为一体,得到一体化预制坯;再经脱脂、高温烧结后得到3D打印陶瓷。本发明得到的陶瓷连接界面无缺陷,具备与本体界面一致的微观结构,同时连接界面无开裂,本发明的方法可用于3D打印陶瓷领域。
-
公开(公告)号:CN115059559B
公开(公告)日:2024-05-24
申请号:CN202210881818.3
申请日:2022-07-26
Applicant: 哈尔滨工业大学 , 上海新力动力设备研究所
IPC: F02K9/86
Abstract: 一种可精准调控固体火箭发动机推力的阀门,本发明为了解决现有可变推力固体火箭发动机是通过针栓的轴向移动调节燃烧室内的压力大小,针栓调节的动力使燃烧室产生波的作用,很难实现精确调节的问题。本发明的两组拉杆(7)平行设置,两组拉杆(7)之间通过铜制弹簧(5)连接,两组拉杆(7)均与下滑道(3)滑动连接,所述拉伸铜丝(6)的一端与拉杆(7)连接,拉伸铜丝(6)的另一端缠绕在电机(4)的输出轴上,电机(4)固定在支撑板(8)上,下滑道(3)和支撑板(8)均固定在底座(9)上,一组拉杆(7)的上端与左侧开合门(2)连接,另一组拉杆(7)的上端与右侧开合门(2)连接,开合门(2)的上端与上滑道(1)滑动连接。本发明采用可远程控制程序操控电机,通过电机控制拉伸铜丝进而实现阀门的开合以实现精准控制。
-
公开(公告)号:CN115385386B
公开(公告)日:2023-12-08
申请号:CN202211137558.5
申请日:2022-09-19
Applicant: 哈尔滨工业大学
Abstract: 一种双金属硫化物/金属硫化物/泡沫镍异质结构材料的制备方法,它涉及双金属硫化物与单金属硫化物的异质结构复合材料的制备方法。它是要解决现有的金属硫化物电容器材料的电化学性能差的技术问题。本方法是将清洗过的泡沫镍放入含金属离子的溶液中浸泡诱导泡沫镍基底参与反应,生成双金属氢氧化物/金属氢氧化物/泡沫镍复合材料,之后再与硫化钠反应生成双金属硫化物/金属硫化物/泡沫镍复合材料。本发明的双金属硫化物/金属硫化物/泡沫镍异质结构复合材料的电容在电流密度为3A g‑1时为1209C g‑1,当电流密度从3A g‑1增至15A g‑1时,电容保持率达68%。可用于高性能电容器领域。
-
公开(公告)号:CN116969819A
公开(公告)日:2023-10-31
申请号:CN202311015127.6
申请日:2023-08-14
Applicant: 哈尔滨工业大学
IPC: C07C45/00 , C07C45/81 , C07C45/79 , C07C45/78 , C07C49/235
Abstract: 一种可见光诱导的1,4‑烯炔化合物分子内炔基迁移并实现未活化烯烃双官能团化的方法,它是要解决现有的未活化烯烃直接选择性官能团化的方法中反应条件苛刻和区域选择性差的技术问题。本方法:室温下,将烯炔化合物、三氟甲基源、光催化剂、碱加入到透明反应器中,密封;然后用氮气置换反应器中的空气,形成氮气气氛,再注入溶剂,混合均匀;将反应器用蓝色LEDs灯光照进行反应;在反应结束后,旋蒸除去溶剂,再经预制硅胶柱层析分离纯化,得到烯炔化合物炔基迁移,并实现烯烃双官能团化的产物,该化合物的结构式为#imgabs0#其中X为卤素;它可以用于药物先导化合物的筛选、供生物活性测试或有机方法学机理研究领域。
-
公开(公告)号:CN115252871B
公开(公告)日:2023-10-03
申请号:CN202210713934.4
申请日:2022-06-22
Abstract: 一种可应用于医用伤口敷料的载药超亲水/超疏水Janus纳米纤维膜及其制备方法,它属于功能性医用敷料的制备技术领域。本发明解决现有CS/PVA纳米纤维膜固有的亲水性不可避免地导致在敷料与伤口之间的界面上保留过多的生物流体,无法有效抑制伤口处细菌滋生的问题。载药超亲水/超疏水Janus纳米纤维膜,它依次由载药层、过渡层及PVDF/SiO2涂层组成;制备方法:一、CIP/ATX/CS/PVA纳米纤维膜制备;二、过渡层制备;三、PVDF/SiO2涂层制备;四、等离子体处理。本发明可应用于医用伤口敷料的载药超亲水/超疏水Janus纳米纤维膜及其制备。
-
公开(公告)号:CN115252871A
公开(公告)日:2022-11-01
申请号:CN202210713934.4
申请日:2022-06-22
Abstract: 一种可应用于医用伤口敷料的载药超亲水/超疏水Janus纳米纤维膜及其制备方法,它属于功能性医用敷料的制备技术领域。本发明解决现有CS/PVA纳米纤维膜固有的亲水性不可避免地导致在敷料与伤口之间的界面上保留过多的生物流体,无法有效抑制伤口处细菌滋生的问题。载药超亲水/超疏水Janus纳米纤维膜,它依次由载药层、过渡层及PVDF/SiO2涂层组成;制备方法:一、CIP/ATX/CS/PVA纳米纤维膜制备;二、过渡层制备;三、PVDF/SiO2涂层制备;四、等离子体处理。本发明可应用于医用伤口敷料的载药超亲水/超疏水Janus纳米纤维膜及其制备。
-
公开(公告)号:CN114566395A
公开(公告)日:2022-05-31
申请号:CN202111270167.6
申请日:2021-10-29
Applicant: 哈尔滨工业大学
Abstract: 基于生物质衍生的氮硫双掺杂的金属氧化物/碳基复合材料的制备方法,它涉及金属氧化物/碳基复合材料的制备方法。它是要解决现有的Co3O4@浒苔多孔碳纤维超容电极材料的比电容低的技术问题。本方法:一、用浒苔制备生物质衍生碳基底;二、制备金属氧化物/碳材料;三、制备氮硫双掺杂的金属氧化物/碳基复合材料。该复合材料的电容在电流密度为1Ag‑1时为1600Fg‑1,当电流密度从1Ag‑1增至50Ag‑1时,电容保持率达65.8%。以该复合材料组装的非对称超级电容器在1.5V的电压窗口下无明显极化且在1.48KW kg‑1的功率密度下的能量密度达73.6Whkg‑1,可用于海洋生态保护及能源存储领域。
-
公开(公告)号:CN111987290B
公开(公告)日:2022-04-22
申请号:CN202010916546.7
申请日:2020-09-03
Applicant: 哈尔滨工业大学
IPC: H01M4/1395 , H01M4/62 , H01M4/38 , H01M4/134 , H01M10/0525
Abstract: 本发明公开了一种锂/锂化金属氧化物框架复合结构负极的制备方法及其应用,所述方法如下:一、将MOx、导电碳和PVDF混合后均匀地涂敷在集流体上,真空烘干后,得到MOx极片;二、以金属锂片作为负极,MOx极片作为对电极,组装电池,进行恒流放电,控制截止电压,获得LiyMOx电极框架;三、将LiyMOx电极框架与熔融锂混合,得到复合结构负极,并采用固态电解质组装全固态电池。本发明将嵌入型过渡金属氧化物MOx作为载体,在其嵌锂后形成具有快速离子传输特性的LiyMOx电极框架,再在框架内部均匀地沉积金属锂,从而抑制锂枝晶的生长,避免安全事故的发生。
-
公开(公告)号:CN113004691B
公开(公告)日:2022-04-12
申请号:CN202110197459.5
申请日:2021-02-22
Applicant: 哈尔滨工业大学
Abstract: 一种防冻可修复导电双网络高聚物及其制备方法和应用,它涉及高聚物及其制备方法和应用。它是要解决现有的导电水凝胶存在的抗冻性差、无自修复功能的技术问题。本发明的高聚物是由第一网络和第二网络形成的互穿网络结构;其中第一网络为含有二硫键的环状物且含有可形成氢键的基团的单体热开环聚合形成的聚合物主链,并由侧链羧基形成氢键交联;第二网络为多醇高聚物和硼类化合物形成的聚合物网络结构。制法:一、制备导电分散液;二、合成单网络聚合物;三、合成防冻双网络;四、制备防冻可修复导电双网络高聚物。该高聚物具有低温压缩和扭转弹性、导电和自修复性能,可应用于0℃~‑60℃的低温传感器。
-
-
-
-
-
-
-
-
-