一种电解双喷制备热镀锌钢镀层透射电镜样品的方法

    公开(公告)号:CN118190559A

    公开(公告)日:2024-06-14

    申请号:CN202410352077.9

    申请日:2024-03-26

    Abstract: 本发明涉及一种电解双喷制备热镀锌钢镀层透射电镜样品的方法,包括:步骤1、将原始热镀锌钢块状样品进行机械减薄,将机械减薄后的样品进行冲孔;步骤2、将冲孔后的样品利用电解双喷减薄仪进行双喷减薄,其中,所述电解双喷减薄仪设置有电解槽,电解槽中设置有高氯酸、无水乙醇混合溶液,电解槽的温度为低于零下的预设温度,冲孔后的样品插入电解槽中;步骤3、电解双喷减薄仪启动,电解双喷减薄仪将冲孔后的样品穿孔至预设透光率后停止工作,将样品取出并清洗,干燥后获得最终的透射电镜样品。本发明解决了现有技术针对热镀锌层透射电镜观察前期的样品薄区面积小的问题,制备透射电镜样品成功率高,本发明还兼具制样速度快制样、成本低的优势。

    一种确定材料发生动态再结晶临界条件的方法

    公开(公告)号:CN113702613B

    公开(公告)日:2024-02-13

    申请号:CN202110956655.6

    申请日:2021-08-19

    Abstract: 本发明涉及一种确定材料发生动态再结晶临界条件的方法,包括:1)对实验材料进行单道次压缩实验,得到变形过程中的应力应变曲线;2)将应力σ和应变ε数据取绝对值,然后在σ‑lgε半对数坐标系或在lgσ‑lgε双对数坐标系内重新绘制应力应变曲线;3)标定线性段部分区间,在其中选择不同的子区间进行多次线性回归;选择回归系数R≥0.99的子区间获得的线性回归方程;4)在直角坐标系下绘制ξ2‑ε曲线;5)确定材料发生动态再结晶的临界应变值。本发明能够快速、准确地确定材料在压缩变形时发生动态再结晶的临界条件,为掌握钢铁材料在热加工过程的工艺参数,优化热加工工艺提供基础。

    一种建立钢铁材料的连续冷却相变模型的方法

    公开(公告)号:CN113063813B

    公开(公告)日:2023-11-10

    申请号:CN202110276597.2

    申请日:2021-03-15

    Abstract: 本发明公开一种建立钢铁材料的连续冷却相变模型的方法,基于相变温度和组织百分比基础数据建立相应的相变模型,组织百分比与冷却速度的关系式为:f=1‑exp[a(v‑b)c],其中,f为组织的百分比,v为连续冷却速度,a,b,c为待定常数;当连续冷却过程中只发生一种相变时,其相变温度按照公式T=A‑Bln(v+C)计算,其中,T为在连续冷却速度v时发生相变的温度,A,B,C为待定常数,相应的组织百分比按照公式f=1‑exp[a(v‑b)c]计算;当连续冷却过程中,分别发生两种以上相变时,所建立的相变模型应考虑该相变之前每一种相变对后一种相变的影响,并分别为每一种影响相变赋予一定的影响权重。本发明考虑了材料在发生两种及以上相变时,各相变之间的相互影响,通过对基础数据的回归分析,得到的模型简单,参数少,更科学准确,实用性更强。

    厚钢板大线能量焊接接口硬度测试试样制备方法

    公开(公告)号:CN116907958A

    公开(公告)日:2023-10-20

    申请号:CN202310783415.X

    申请日:2023-06-29

    Abstract: 本发明涉及钢铁材料焊接接口硬度检验技术领域,尤其涉及厚钢板大线能量焊接接口硬度测试试样制备方法。采用整截面制备,解决了分段取样硬度值出现间断点的难题,可准确地确定各焊接区域硬度的测试点,达到连续测定焊接接口硬度值,满足船板等厚板硬度检测要求。利用磨制、抛光方法解决常规金相焊接样品制样所不能实现的大尺寸样品磨、抛难题。配制一种烷基苯磺酸纳表面活性剂,对试面进行表面均匀化处理。使厚板焊接接头组织的对称性及各区域边界线显示得更加清晰,能够清晰界定焊接各区边界,准确变换硬度测定间距点。本发明配制冷酸腐蚀剂,使得焊接接口的母材、热影响区、焊缝区各域组织清晰呈现出来。

    一种检验薄钢板表面夹杂物的金相试样制备方法

    公开(公告)号:CN114942166A

    公开(公告)日:2022-08-26

    申请号:CN202210322868.8

    申请日:2022-03-30

    Abstract: 本发明涉及冶金分析领域材料检验,尤其涉及一种检验薄钢板表面夹杂物的金相试样制备方法。具体包括如下步骤:1)截取薄钢板宏观夹杂缺陷板状试样:2)将板状样品弯折成直角L型金相样品:将夹杂物存在的表面朝下,沿着板状样品的纵向,在远离夹杂物一端取1/3长度,用机械弯折的方法将板状试样沿横向折起,近似呈90度角,制成L型金相样品;确保夹杂物区域位于L型金相样品直角底边的外底面;3)L型样品的磨制抛光制备操作:4)金相显微观察检验。本发明能够对钢板Z向表面进行磨制抛光制备,进而有效显示表面或皮下非金属夹杂物。可准确定位薄钢板表面夹杂物缺陷,解决传统夹杂物取样随机性大,漏检严重夹杂区域的问题。

    一种热力模拟试验机用高温拉伸卡具及其设计和使用方法

    公开(公告)号:CN111855391A

    公开(公告)日:2020-10-30

    申请号:CN202010644707.1

    申请日:2020-07-07

    Abstract: 本发明公开了一种热力模拟试验机用高温拉伸卡具及其设计和使用方法,卡具包括楔形卡块和柱形卡环,所述楔形卡块成组使用,共需2组分别夹持试样的两端;每组至少由2个楔形卡块组成1个台体,台体的侧面与面积较大的底面呈θ角,台体的上下底面中心开有一通孔,并提供了θ角的设计方法;所述柱形卡环呈柱状,内部有一腔体,且腔体为一台体,该台体的锥度与一组楔形卡块组成的台体锥度相同。本发明设计的卡具结构简单,装拆方便,且在高温拉伸试样的两端免去加工螺纹条件下,实现很大的加载力而不会失效,满足高温拉伸试验需求。

    一种获取高温拉伸试样断口的方法

    公开(公告)号:CN108398336B

    公开(公告)日:2020-10-27

    申请号:CN201710064819.8

    申请日:2017-02-05

    Abstract: 本发明提供一种获取高温拉伸试样断口的方法,将热电偶焊接在待测试样的中间,在真空状态下将试样加热到1330~1370℃,保温4~5min后,以2.8~3.2℃/S的速率降温至1190~1210℃,保温55~65s后,以2×10‑3/S速率将试样拉伸;并将试验过程分为变形初期、变形中期和变形后期三个阶段分别控制,变形中期当试样变形力经过最高点之后下降到某一个力值F时,将设定的试验拉伸温度置为零,力值F=规定基准力F0+加摩擦力f+试样所处环境的内外压力差Fp,当F=f+Fp时,将设定的试验拉伸温度置为零,规定基准力F0设定在20~50千克力。本发明操作方便快捷,可有效避免试样由于断裂所致断口熔融现象的发生,有利于进行微观组织及断口形貌的研究。

    一种板形试样的高温压缩装置及试验方法

    公开(公告)号:CN110879179A

    公开(公告)日:2020-03-13

    申请号:CN201911042869.1

    申请日:2019-10-30

    Abstract: 本发明涉及热力模拟试验技术领域,尤其涉及一种板形试样的高温压缩装置及试验方法。包括楔形块、承载体与卡紧块;所述楔形块为两对,每对组合在一起与热力模拟试验机的两侧U型槽相匹配,楔形块设有豁口,每对楔形块组合后豁口形成通孔;承载体与通孔适配,承载体放置在通孔内,两对楔形块夹持住承载体;承载体中间部位开有通槽,通槽从槽底向上横截面逐渐变小,槽底部与板形试样适配,板形试样放置在槽底部,卡紧块放置在板形试样上。该方法可以有效防止板形试样在较高温度下压缩时发生屈曲现象,从而在热力模拟试验机上实现对板形材料在高温压缩过程的工艺模拟。

    一种测定材料静态再结晶体积分数的方法

    公开(公告)号:CN110702727A

    公开(公告)日:2020-01-17

    申请号:CN201910942464.7

    申请日:2019-09-30

    Abstract: 本发明公开了一种测定材料静态再结晶体积分数的方法,应用热力模拟试验机进行一组单道次压缩试验,得到应力应变曲线,进行数据拟合、微分操作,得到加工硬化率与相应的应力之间的关系曲线,从曲线中的拐点判断发生动态再结晶的临界应变εc;应用热力模拟试验机进行一组双道次压缩试验,双道次的总变形量小于单道次的变形量,且双道次压缩试验中的每一道次变形量ε0均小于单道次压缩试验确定出的动态再结晶临界应变量εc;采用多项式分别对单道次、双道次中应力应变曲线进行拟合,分别进行积分操作,得到相应的应变能;最后计算静态再结晶体积分数。本发明考虑了回复、动态再结晶对静态再结晶体积分数的影响,能够更准确测定钢铁材料奥氏体静态再结晶体积分数。

    一种构建材料变形抗力模型的方法

    公开(公告)号:CN107818184A

    公开(公告)日:2018-03-20

    申请号:CN201610802819.9

    申请日:2016-09-06

    CPC classification number: G16Z99/00

    Abstract: 本发明提供一种构建材料变形抗力模型的方法,通过等温压缩模拟实验获得材料的流变应力曲线,以及加工硬化率与应力之间的关系曲线;从应变为0.002处引一条与应力应变曲线初始段平行的直线,利用直线与应力应变曲线相交点的坐标确定出屈服应力和应变;将曲线分成三类,并按三类曲线分段构建变形抗力模型,根据确定的临界点、峰值点以及稳定点对应的特征值,找出其与参数的关系,将各计算公式联立,得到各特征值与变形速率和温度的关系式,将所得结果代入变形抗力计算公式,构建出所需的变形抗力模型。本发明根据材料不同的组织变化阶段,将变形抗力模型进行分段,使不同的组织变化阶段对应不同的变形抗力模型,从而能有效提高轧制力计算精度。

Patent Agency Ranking