-
公开(公告)号:CN110055519A
公开(公告)日:2019-07-26
申请号:CN201910340015.5
申请日:2019-04-25
Applicant: 三峡大学
Abstract: 本文提供一种二氧化钛超微球和纳米线双粗糙结构的疏水薄膜的制备方法。该二氧化钛超疏水薄膜主要由微米级的TiO2微球和纳米级TiO2纳米线组成的二元微纳结构以及低表面能物质构成。其制备方法为:采用水热法制备TiO2微球,离心洗涤后加入聚氨酯树脂作为粘结剂充分搅拌均匀得到疏水微球TiO2胶体。将胶体通过旋涂法制膜后煅烧获得疏水TiO2微球薄膜。再将TiO2微球薄膜浸入TiCl4水溶液获得一层TiO2致密层。然后在处理后的微球多孔膜表面水热生长TiO2纳米线超疏水薄膜。最后用乙醇洗净后干燥,在表面沉积一层低表面能物质,即可获得高稳定性和疏水性能的TiO2微球和纳米线双结构的疏水薄膜。本发明具有疏水性能好,力学性能稳定性好,反应温度低,对环境友好等优点。
-
公开(公告)号:CN109686594A
公开(公告)日:2019-04-26
申请号:CN201910049290.1
申请日:2019-01-18
Applicant: 三峡大学
Abstract: 本发明公开了一种钴基双金属硫化物(M-Co-S,M=Ni,Fe,Mo,Bi,Zn)负极材料的制备方法及其在水系超级电容器中的应用。以表面长有石墨烯的泡沫镍为基底,钴盐为钴源,M盐作为M源,氟化铵和六次甲基四胺为沉淀剂,硫化钠为硫化剂,两步水热法获得M-Co-S薄膜,M-Co-S均匀覆盖在长有石墨烯的泡沫镍基底表面。将制备的M-Co-S材料组装成三电极体系,在1M KOH电解液中进行电化学性能评价,最大比电容高达2.6 F/cm2(1625F/g),远高于常用的碳负极材料,说明M-Co-S是一种极具应用前景的超级电容器负极材料。
-
公开(公告)号:CN109280902A
公开(公告)日:2019-01-29
申请号:CN201811132537.8
申请日:2018-09-27
Applicant: 三峡大学
IPC: C23C16/26 , C23C16/505 , C23C16/02
Abstract: 本发明公开了一种氮硅双修饰石墨烯量子点固态膜的制备方法。该方法以射频等离子体增强化学气相沉积技术作为石墨烯量子点固态膜生长方法,以高纯乙烯作为石墨烯量子点生长的碳源气体,以硅烷混合气和高纯氮气分别为石墨烯量子点的生长提供硅元素修饰和氮元素修饰。相对于目前常用的石墨烯量子点制备方法,如电化学法、水热法、酸氧化法、溶液化学法以及微波超声等方法,该方法的突出优点是石墨烯量子点不是以液态和胶体态的形式存在,而是以固态膜的形式存在且制备工艺同传统半导体工艺相兼容。本发明所提出的这种氮硅双修饰石墨烯量子点固态膜的制备方法能使石墨烯量子点在太阳能电池、光电探测器以及发光二极管等半导体器件中得到很好的应用。
-
公开(公告)号:CN108470623A
公开(公告)日:2018-08-31
申请号:CN201810195107.4
申请日:2018-03-09
Applicant: 三峡大学
Abstract: 本发明所提供的染料敏化太阳能电池用二氧化硅和氧化锌增透薄膜及其制备方法。采用折射率为1.3的SiO2置于导电玻璃FTO的玻璃表面,折射率为1.9的ZnO置于导电玻璃FTO的导电面,与导电玻璃折射率形成梯度变化,提高导电玻璃的透过率,最终提高染料敏化太阳能电池的效率。本发明所得的增透薄膜既可以提高导电玻璃的透过率,还可以增强电子传输效率,其用于准固态染料敏化太阳能电池,电池光电转化效率可从4.71%提高到5.63%。
-
公开(公告)号:CN108165952A
公开(公告)日:2018-06-15
申请号:CN201711285578.6
申请日:2017-12-07
Applicant: 三峡大学
IPC: C23C16/34 , C23C16/513 , C23C16/02 , C23C16/56
Abstract: 本发明公开了一种透光性硬质氮化碳薄膜的制备方法,该方法包括以下步骤:清洗玻璃基片;以甲烷为反应气体,采用等离子体增强化学气相沉积技术在玻璃基片表面沉积一层非晶碳薄膜;采用等离子体增强化学气相沉积技术对玻璃基片表面沉积的非晶碳薄膜进行氨气等离子体处理;以甲烷和氨气为反应气体,采用等离子体增强化学气相沉积技术在氨气等离子体处理后的非晶碳表面沉积一层氮化碳薄膜;在高纯氮气气氛中低温热处理氮化碳薄膜。该方法通过修饰玻璃基片表面化学键、优化氮化碳薄膜中氮原子和氢原子含量以及在氮气氛围中采用低温热处理的方法调整薄膜内应力,从而使氮化碳薄膜具有良好的硬度和透光性。
-
公开(公告)号:CN107916411A
公开(公告)日:2018-04-17
申请号:CN201711165336.3
申请日:2017-11-21
Applicant: 三峡大学
IPC: C23C16/26 , C23C16/505 , B82Y40/00
Abstract: 本发明提供了一种固态荧光碳量子点的制备方法。具体步骤包括将石英片或者单晶硅片置于丙酮无水乙醇中超声清洗后用去离子水超声冲洗,氮气吹干;在200-300℃条件下对反应室预抽真空,至压强低于10-4Pa;以甲烷为工作气体,采用等离子体增强化学气相沉积技术在反应室内于石英片或者单晶硅片上制备嵌有碳量子点的薄膜。该方法制备的碳量子点具有工艺简单、效率高、周期短、绿色环保等特点,所生长的碳量子点具有纯度高、粒度小、荧光发光效率高等特性。本发明所制备的荧光碳量子点在医学影像、光致发光材料以及各种半导体发光器件等方面有很好的潜在应用。
-
公开(公告)号:CN105648417B
公开(公告)日:2017-12-22
申请号:CN201610144655.5
申请日:2016-03-14
Applicant: 三峡大学
IPC: C23C16/26 , C23C16/505
Abstract: 本发明公开了一种利用低温化学气相沉积技术制备非晶碳薄膜的方法,该方法包括以下步骤:(1)清洗单晶硅片;(2)将清洗好的硅片放入充有氧气的高温石英退火炉中进行热氧化处理,使其表面形成一层氧化硅薄膜;(3)以甲烷为反应气体,采用等离子体增强化学气相沉积法在步骤(2)中所形成的氧化硅薄膜表面沉积非晶碳薄膜。用上述方法所制备的非晶碳薄膜具有工艺简单、均匀性好、电阻率低以及适合大面积制备等优点,而且此工艺与现有的半导体工艺技术相兼容,有利于非晶碳薄膜的应用。
-
公开(公告)号:CN104795243B
公开(公告)日:2017-09-22
申请号:CN201510057777.6
申请日:2015-02-04
Applicant: 三峡大学
CPC classification number: Y02E60/13
Abstract: 本发明属于电容器的制备技术领域,涉及一种基于镍铁层状双金属氢氧化物的非对称超级电容器及其制备方法。本电容器包括正极极片、负极极片、电解液、隔膜以及封装膜;正极极片为氢氧化镍,基底为泡沫镍或钛片,其特征是负极活性材料为镍铁层状双金属氢氧化物,基底为泡沫镍或钛片,电解液采用氢氧化钠、氢氧化钾、硫酸钠或硫酸钾溶液。该非对称超级电容器的制备方法,包括正极极片、负极极片的制备,电解液的配置以及电容器的组装。该非对称超级电容器电压窗口较宽,比电容较高,循环性能好,制备方法简单易操作,成本低。在电子产品、交通运输、移动通信、航空航天和国防科技等领域有很大的应用前景。
-
公开(公告)号:CN106601484A
公开(公告)日:2017-04-26
申请号:CN201611134082.4
申请日:2016-12-10
Applicant: 三峡大学
IPC: H01G9/20
CPC classification number: Y02E10/542 , H01G9/2031 , H01G9/0029 , H01G9/2036
Abstract: 本发明所提供的碘掺杂二氧化钛微球及其制备方法。在室温条件下,将无水乙醇,十二胺和钛酸异丙酯混合搅拌作为前驱液;其次,用碘和去离子水作为反应溶液,将前驱液滴加到反应溶液中,快速搅拌,反应12个小时。最后,离心洗涤后取沉淀加入到无水乙醇和去离子水中搅拌均匀,取TiO2反应胶体加入到反应釜内,密封、控制温度160‑250℃进行反应12h后冷至室温,离心、洗涤、加入乙基纤维素可得TiO2浆料,通过丝网印刷法制备TiO2电极,500℃烧结0.5 h即可得碘掺杂TiO2微球电极。本发明所得电极具有大的比表面积、有效的电子传输路径和高的电导率,其用于准固态染料敏化太阳能电池,电池光电转化效率可达6.38%。
-
公开(公告)号:CN104617185B
公开(公告)日:2016-07-06
申请号:CN201510042506.3
申请日:2015-01-28
Applicant: 三峡大学
IPC: H01L31/18
CPC classification number: Y02P70/521
Abstract: 本发明公开了一种以绒面单晶硅片为基底的含硅量子点薄膜材料制备方法,该方法包括以下步骤:(1)配制化学腐蚀溶液并获取具有绒面结构的单晶硅基片;(2)采用等离子体增强化学气相沉积技术在绒面单晶硅基片上制备微晶硅薄膜;(3)对步骤(2)所制备的样品在高纯氮气或氧气氛围下进行高温退火处理。经过上述步骤所制备的硅量子点薄膜材料具有硅量子点尺寸精度可控性高、钝化效果好等优点。
-
-
-
-
-
-
-
-
-