一种内燃机曲轴系统纵扭耦合刚度计算方法

    公开(公告)号:CN107563000A

    公开(公告)日:2018-01-09

    申请号:CN201710645583.7

    申请日:2017-08-01

    Abstract: 一种内燃机曲轴系统纵扭耦合刚度的计算方法,包括如下步骤:测量并记录内燃机曲轴系统相关参数;确定曲轴系统的轴承约束条件;建立纵扭耦合刚度分析模型;在目标曲柄主轴颈处施加单位扭矩,建立空间超静定系统平衡方程,并建立多余约束处的变形协调条件;得到将变形协调条件转变为求解未知多余约束力的补充方程;再联立系统平衡方程,求解出曲轴系统轴承处的支撑反力、目标曲柄固定端处的约束力及约束力矩;在目标曲柄主轴颈和相邻曲柄主轴颈分别施加单位轴向作用力,计算得到单位扭矩作用下的轴向位移柔度;最终求出耦合刚度。本发明方法计算内燃机曲轴系统纵扭耦合刚度精度高且易于工程实现。

    一种声子晶体轴的二维减振装置

    公开(公告)号:CN107165978A

    公开(公告)日:2017-09-15

    申请号:CN201710416176.9

    申请日:2017-06-06

    CPC classification number: F16H57/0006 F16F15/007 F16F15/18

    Abstract: 本发明提供一种声子晶体轴的二维减振装置,其特征在于:包括声子晶体轴、声子晶体轴环形结构、声子晶体轴环形结构、压电圆弧贴片、传感系统、执行系统、接地系统、控制器,所述的声子晶体轴的内部周期性交替分布着声子晶体轴环形结构和声子晶体轴环形结构,压电圆弧贴片位于声子晶体轴的外表面上。本发明利用压电材料的自感知原理,将振动的主动控制引入轴中,对轴在中高频域内的弯曲振动起到了良好的减振降噪的目的。由于装置中的轴是声子晶体轴,在径向方向具有周期性,因此实现了对轴的二维振动的有效抑制。本发明整体结构简单、制造方便,用于降低齿轮与轴高速运转时所产生的噪声。

    一种滑油消耗分析装置
    43.
    发明公开

    公开(公告)号:CN105241516A

    公开(公告)日:2016-01-13

    申请号:CN201510707335.1

    申请日:2015-10-27

    Abstract: 本发明提供一种滑油消耗分析装置,包括带有密封螺栓的筒体、安装在带有密封螺栓的筒体上端的端盖、设置在带有密封螺栓的筒体下端的底座、安装在带有密封螺栓的筒体外表面上的气体进口和安装在带有密封螺栓的筒体内部的输油管,所述输油管的上端与进油口相连、输油管的底端连接有油雾喷嘴,输油管上还设置有四个凹槽,且四个凹槽沿着输油管的外表面对称设置,经气体进口进入的气体经所述凹槽与输油管中滑油混合后进入油雾喷嘴。本发明可以对柴油机中润滑油的使用情况进行预判,进而合理设置润滑油的供给量,做到节能减排。

    一种悬臂式半主动吸振器
    44.
    发明公开

    公开(公告)号:CN102116357A

    公开(公告)日:2011-07-06

    申请号:CN201110057482.0

    申请日:2011-03-10

    Abstract: 本发明提供的是一种悬臂式半主动吸振器。包括悬臂梁、方箱、直流电机、传动齿轮、由铁芯与线圈构成的电磁铁以及主动控制器,悬臂梁上带燕尾槽,悬臂梁的两个侧边带有齿条,方箱的下部带有与悬臂梁上的燕尾槽相匹配的梯形块,两部直流电机安装在方箱两侧,安装在直流电机轴上的传动齿轮与齿条相啮合,由铁芯与线圈构成的电磁铁置于方箱中,主动控制器控制直流电机和电磁铁。本发明的一种悬臂梁式半主动吸振器,仅需单个安装点、无闲置梁长度、具有高抗振性和可靠性的特点。

    工作状态下的弹性联轴器动静扭转刚度同步测量方法

    公开(公告)号:CN101718612A

    公开(公告)日:2010-06-02

    申请号:CN200910073374.5

    申请日:2009-12-09

    Abstract: 本发明提供的是一种工作状态下的弹性联轴器动静扭转刚度同步测量方法。在由功率接收机和原动机以及连接在功率接收机和原动机之间的弹性联轴器组成的动力装置的两端分别安装一个角标仪,动力装置启动后由数据采集仪采集两个角标仪发出的脉冲信号,分别将两个角标仪的脉冲信号换算成扭转角度,然后将两角标仪的对应时刻的角度相减得到反应弹性联轴器承受的扭矩的转角差值,进而得到弹性联轴器的扭转刚度。本发明的测量方法可以在实际装置上进行,不需要设计专门的实验台架;本发明测量得到的是弹性联轴器实际工作状态的扭转刚度,可以在动力装置运行时在线测量。

    一种基于动力学的凸轮副界面摩擦-温升预测模型及方法

    公开(公告)号:CN118690561A

    公开(公告)日:2024-09-24

    申请号:CN202410817470.0

    申请日:2024-06-24

    Abstract: 本申请公开了一种基于动力学的凸轮副界面摩擦‑温升预测模型及方法,涉及船用柴油机配气凸轮副摩擦润滑技术领域,该方法包括,获取船用柴油机配气机构信息,包括配气凸轮副结构和润滑油参数。建立配气凸轮副的单质量动力学模型,分析动态接触性能,确定波动工况下的动力学参数。基于线接触弹流润滑模型,分析弹流润滑特征参数,包括油膜压力和厚度。根据动力学参数和弹流润滑特征参数,确定摩擦系数和油膜表面闪温。本申请能够对波动载荷工况下柴油机配气凸轮副进行界面摩擦润滑特性研究,探究其运行过程中润滑‑接触演变机理。

    双层油膜润滑结构的摩擦学性能测试实验装置

    公开(公告)号:CN117929179A

    公开(公告)日:2024-04-26

    申请号:CN202410105543.3

    申请日:2024-01-25

    Abstract: 本发明涉及柴油机供油机构测试技术领域,尤其涉及一种双层油膜润滑结构的摩擦学性能测试实验装置,包括试验台、双层油膜润滑模拟机构、驱动机构、动力输出机构和测试机构,通过双层油膜润滑模拟机构和驱动机构模拟双层油膜润滑机构的运行,浮动衬套的旋转状态实时显示了浮动衬套内外侧油膜摩擦力矩的共同作用。动力输出机构与浮动衬套同步转动,利用测试机构测试动力输出机构的转动情况,即为浮动衬套的转动情况,本发明的双层油膜润滑结构的摩擦学性能测试实验装置,可实时测试运行数据,对获取的测试数据进行整理和总结,可以得到双层油膜润滑结构的更多性能,方便对双层油膜润滑结构的运行工况进行预先判断,填补了该结构实验设计上的空白。

    预测三维混合润滑条件下船用正时齿轮疲劳寿命的方法

    公开(公告)号:CN115758708A

    公开(公告)日:2023-03-07

    申请号:CN202211411835.7

    申请日:2022-11-11

    Abstract: 本发明公开了预测三维混合润滑条件下船用正时齿轮疲劳寿命的方法,涉及船舶柴油机仿真技术领域,通过计算正时齿轮副动态啮合性能,计算三维混合润滑性能,计算润滑‑接触状态下应力,计算相对疲劳寿命预测反馈。每一时刻根据上一时刻计算结果重新对四部分进行计算,考虑船舶柴油机正时齿轮典型瞬变工况和界面真实表面粗糙度影响,开展正时齿轮次表面三维动态应力计算以及疲劳寿命预测研究,揭示真实表面粗糙度、结构及材料等参数对润滑状态和疲劳寿命的影响规律,为船舶柴油机正时齿轮副摩擦学优化设计及疲劳寿命预测提供理论指导。

    一种考虑结构振动的船用凸轮-挺柱副弹流润滑分析方法

    公开(公告)号:CN113503197B

    公开(公告)日:2022-11-18

    申请号:CN202110783267.2

    申请日:2021-07-12

    Abstract: 本发明的目的在于提供一种考虑结构振动的船用凸轮‑挺柱副弹流润滑分析方法,步骤如下:建立配气机构单质量动力学模型,将挺柱、摇臂及气阀简化为集中质量,推导动力学微分方程,得到配气机构零部件动力学特性;建立凸轮‑挺柱接触分析模型,求解运行过程中波动的接触载荷;建立凸轮‑挺柱副弹流润滑分析模型,并耦合获取的波动接触载荷,分析波动载荷下油膜状态,包括油膜压力、油膜厚度,为配气机构弹流润滑分析提供新方法。本发明采用了单质量动力学模型,并优化了凸轮‑挺柱间接触载荷,可为改善凸轮‑挺柱间接触情况提供思路。采用了弹流润滑分析模型,并耦合波动接触载荷,分析了凸轮‑挺柱间润滑状态,为配气机构弹流润滑分析提供新方法。

    一种阶梯式多重沟槽的轴向柱塞泵柱塞

    公开(公告)号:CN111237153B

    公开(公告)日:2021-12-21

    申请号:CN202010204324.2

    申请日:2020-03-21

    Abstract: 本发明涉及一种阶梯式多重沟槽的轴向柱塞泵柱塞,包括柱塞本体,所述柱塞本体沿轴线方向上开设有柱塞腔,所述柱塞本体右端有一柱塞球头,所述柱塞球头沿所述柱塞本体轴线开设有阶梯形孔,所述柱塞腔与所述阶梯形孔连通,所述柱塞本体左端面为弧形底面,所述柱塞本体的表面上开设有不同深度的平行分布的环形槽,即阶梯式多重沟槽,从小到大依次为环形槽Ⅰ,环形槽Ⅱ,环形槽Ⅲ,环形槽Ⅳ。本发明通过在柱塞表面加工阶梯式多重沟槽,能够提高柱塞摩擦副处的油膜承载力,减小摩擦力和摩擦转矩,降低机械损失,增强流体的挤压效应从而改善润滑特性,对柱塞摩擦副的减磨延寿具有重要意义。

Patent Agency Ranking