-
公开(公告)号:CN107256529A
公开(公告)日:2017-10-17
申请号:CN201710342909.9
申请日:2017-05-16
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种多目标量子蝙蝠演进机制的小波数字水印生成方法。建立设计模型,确定对应于多目标量子蝙蝠演进机制的关键参数。构造多目标小波数字水印系统最大值求解问题的多目标函数,量子蝙蝠根据目标函数值进行非支配量子位置排序和拥挤度计算,将非支配量子位置排序等级为1且拥挤度大的量子位置放入精英量子位置集。使用多目标量子蝙蝠演进机制更新量子蝙蝠的速度和量子位置,选择非支配量子位置,更新精英量子位置集。从最终的Pareto前端量子位置集中选择量子位置并映射为位置作为多目标小波数字水印的一种设计方案。本发明的实时性好且应用范围广泛,能够解决需要综合考虑不同指标要求的多目标小波数字水印设计这一技术难题。
-
公开(公告)号:CN106254008A
公开(公告)日:2016-12-21
申请号:CN201610880913.6
申请日:2016-10-09
Applicant: 哈尔滨工程大学
IPC: H04B17/382
CPC classification number: H04B17/382
Abstract: 本发明提供的是一种能量采集绿色认知无线电的频谱感知方法。一,建立能量采集绿色认知无线电的频谱感知系统模型;二,初始化种群;三,对所有种群中的所有量子个体的适应度进行评价;四,分别对每一个种群内部的量子个体进行混合量子差分演化;五,在迭代次数满足一定的条件下比较每个种群之间的全局最优解,如果全局最优解均相同,对种群内的个体进行灭绝处理;六,如果进化没有终止,返回步骤四,否则执行步骤七;七,终止迭代,输出任意种群的全局最优量子个体的量子态,根据映射规则将其映射为可行解。本发明旨在联合获得最优的能量采集因子与信道感知数目,在次用户所需吞吐量已知的条件下,寻求系统的最小能量采集率,实现绿色通信的理念。
-
公开(公告)号:CN112217678B
公开(公告)日:2023-03-17
申请号:CN202011097353.X
申请日:2020-10-14
Applicant: 哈尔滨工程大学
IPC: H04L41/044 , H04L41/14 , H04L41/0806 , H04L41/0823 , H04L41/0816 , H04B17/382
Abstract: 本发明提供一种基于量子帝王蝶优化机制的双层异构网络频谱分配方法,包括:建立双层异构网络系统模型;得到帝王蝶的整数编码位置;计算所有帝王蝶的适应度值,得到全局最优量子位置及其对应的全局最优位置;对帝王蝶种群排序,分为两个帝王蝶子种群;更新子种群中每个帝王蝶个体的过渡量子位置;合并两个新生成的子种群为一个新的过渡种群,更新帝王蝶种群的量子位置,计算量子帝王蝶的适应度值,更新全局最优量子位置和全局最优位置;判断是否达到最大迭代次数,若是则输出全局最优量子位置和全局最优位置,全局最优位置即为频谱分配的最佳方案;否则令迭代次数加1,返回进行新一轮的迭代。本发明解决整数离散优化的双层异构网络频谱分配问题。
-
公开(公告)号:CN109358313B
公开(公告)日:2023-02-10
申请号:CN201811310188.4
申请日:2018-11-06
Applicant: 哈尔滨工程大学
IPC: G01S3/28
Abstract: 本发明属于阵列信号处理领域,具体涉及一种基于量子带电系统搜索演化机制的宽带测向方法。本发明步骤为:建立宽带信号采样模型;量子带电系统搜索演化机制参数初始化;计算所有带电粒子的适应度,按照降序方式排序;创建带电粒子的量子记忆库;更新带电粒子的带电量以及它们之间的距离;更新带电粒子的移动概率和所受合力;更新带电粒子的量子旋转角度、量子位置和速度;计算带电粒子的适应度,并按照降序方式排序,更新量子记忆库;判断是否达到最大迭代次数;输出量子带电系统全局最优量子位置映射成最优位置。本发明以量子带电系统搜索演化机制对宽带信号进行测向,减少了运算量和运算时间,提高了收敛速度和收敛精度,实现快速高精度测向。
-
公开(公告)号:CN110046326B
公开(公告)日:2022-09-27
申请号:CN201910349676.4
申请日:2019-04-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开一种时频DOA估计方法,包括:建立阵列接收的时域数据模型;对时域数据进行快拍采样;对快拍采样数据进行时频分析得到PWVD矩阵;计算时频平均的快拍采样数据PWVD矩阵;构造极大似然方程;初始化量子地雷量子位置;由极大似然方程构造适应度函数;模拟量子地雷爆炸过程获得量子弹片的量子位置;计算量子弹片量子位置映射态的适应度函数值,选择适应度大的优秀量子位置作为放置量子地雷的量子位置,用于引爆下一代的量子地雷,根据所有量子位置的适应度更新全局最优量子位置;达到最大迭代次数后,输出信号方位角最优估计值,本发明能在较短时间内得到较准确的非平稳信号DOA估计结果,并且在信号源为相干源的条件下仍有效。
-
公开(公告)号:CN113794659A
公开(公告)日:2021-12-14
申请号:CN202111050681.9
申请日:2021-09-08
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种信道估计与信号检测方法,建立OFDM系统数学模型;建立自动演化DNN信道估计与信号检测模型;初始化量子蜉蝣种群位置和量子速度并设定参数;对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置;进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新;对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新;迭代更新至最大迭代次数,把全局最优结果带入模型中,将接收的时频信号序列输入DNN模型恢复出码元并输出。本发明通过量子演化机制与蜉蝣种群原理结合,自动求解DNN模型所需最优参数,提高了DNN模型的信道估计与信号检测效果。
-
公开(公告)号:CN108549402B
公开(公告)日:2020-11-10
申请号:CN201810224721.9
申请日:2018-03-19
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明涉及一种基于量子乌鸦群搜索机制的无人机群任务分配方法,包括:建立从多个起点到多个任务的无人机群任务分配模型,包括无人机型号数、起点终点和分配模型;初始化量子乌鸦群;根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置;更新每只量子乌鸦的量子位置和位置;根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到迄今为止的最优食物位置,若达到最大迭代代数则输出全局最优食物位置,映射为任务分配矩阵。本发明解决了离散多约束目标函数求解问题,并设计离散量子乌鸦算法作为演进策略,具有收敛速度快,收敛精度高的优点。
-
公开(公告)号:CN107622327B
公开(公告)日:2020-11-03
申请号:CN201710833308.8
申请日:2017-09-15
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于文化蚁群搜索机制的多无人机航迹规划方法。1、根据栅格法对规范空间进行网格划分。2、建立多无人机航迹规划模型,包括无人机个数、起点终点和威胁模型。3、初始化起点和终点。4、初始化蚁群算法,包括初始化蚁群,计算启发因子和引导因子。5、将所有蚂蚁分配到初始节点,更新禁忌知识。根据禁忌知识和状态转移概率选择下一个节点进行转移直到可选节点为空或达到目的节点,更新历史知识,根据历史知识更新信息素。若达到最大迭代数输出最短路径,知道得到U条多无人机最优多路径航迹。本发明解决了搜索速度慢且计算量大,很难找到无人机的最优飞行航迹的问题,且能实现多无人机航迹规划。
-
公开(公告)号:CN107436429B
公开(公告)日:2020-09-25
申请号:CN201710832741.X
申请日:2017-09-15
Applicant: 哈尔滨工程大学
IPC: G01S7/41
Abstract: 本发明提供的是一种冲击噪声环境下基于稀疏重构的极化双基地MIMO雷达参数估计方法。一,建立冲击噪声环境下的极化双基地MIMO雷达接收数据模型;二,对快拍采样数据做去冲击预处理;三,利用子空间旋转不变特性进行极化双基地MIMO雷达发射角参数估计;四,构造极化双基地MIMO雷达的稀疏字典集;五,稀疏重构极化双基地MIMO雷达接收角;六,判断是否达到最大迭代次数,若是,执行步骤七;否则令k=k+1,返回步骤五;七,得到稀疏重构结果sk,利用索引集U得到极化双基地MIMO雷达的接收角信息,输出极化双基地MIMO雷达的发射角和接收角估计结果。本发明有更广泛的实用范围,能应用于现有的双基地MIMO雷达参数估计方法所不能解决的实际问题。
-
公开(公告)号:CN110233755A
公开(公告)日:2019-09-13
申请号:CN201910475842.5
申请日:2019-06-03
Applicant: 哈尔滨工程大学
IPC: H04L12/24 , H04L12/911 , H04L29/08 , H04W16/14
Abstract: 本发明提供一种物联网中雾计算的计算资源和频谱资源分配方法,包括:建立雾计算系统模型;初始化量子种子群及参数,通过对量子种子进行测量,得到量子种子的位置;计算所有量子种子的适应度值,得到量子种子群全局最优位置并选择量子种子精英位置集;根据量子种子播撒规则,更新种群中所有量子种子的量子位置;对所有更新后的量子种子的量子位置进行测量得到相应的位置,计算每一个量子种子的适应度值,更新全局最优位置和量子种子精英位置集;如果迭代次数小于预先设定的最大迭代次数,返回第四步;否则,终止迭代,输出量子种子群的全局最优位置,得到相应的计算资源和频谱资源分配方案。本发明可以解决物联网中雾计算的网络能量效率优化问题。
-
-
-
-
-
-
-
-
-