一种多无人机抢灾救援规划方法

    公开(公告)号:CN114995492B

    公开(公告)日:2024-11-08

    申请号:CN202210594253.0

    申请日:2022-05-27

    Abstract: 本发明公开了一种多无人机抢灾救援规划方法,步骤一、建立多无人机救援规划模型;步骤二、初始化量子北方苍鹰量子位置并设定参数;步骤三、计算量子北方苍鹰目标函数值;步骤四、根据所有量子北方苍鹰位置的目标函数值进行非支配解排序;步骤五、计算每一非支配等级中量子北方苍鹰位置拥挤度;步骤六、在猎物识别攻击阶段更新量子北方苍鹰量子位置;步骤七、在追逃阶段更新量子北方苍鹰量子位置;步骤八、判断是否达到量子北方苍鹰最大迭代次数,是则终止迭代,将非支配等级为1的量子北方苍鹰位置对应为任务分配矩阵,作为抢灾救援规划任务分配结果输出;否则令k=k+1,执行步骤四。本发明克服了容易陷入局部收敛的弊端,提升了演化机制的寻优速率。

    基于量子海鸥演化机制加权Myriad滤波器设计方法

    公开(公告)号:CN113239628B

    公开(公告)日:2023-10-03

    申请号:CN202110611609.2

    申请日:2021-06-02

    Abstract: 本发明公开了一种基于量子海鸥演化机制加权Myriad滤波器设计方法,包括:构造通过冲击噪声信道的信号,并划分训练集和测试集;确定加权滤波器最优参数的目标函数;初始化量子海鸥机制的参数;计算适应度值,确定量子海鸥的最优量子位置;量子海鸥执行迁移操作;量子海鸥执行攻击操作并更新其量子位置;更新量子海鸥的适应度值及最优量子位置;判断是否达到最大迭代次数,若达到最大迭代次数,则终止迭代,继续往下执行;否则返回;使用具有最优权值参数和线性度参数的加权Myriad滤波器对测试集中的信号或待滤波信号进行处理。本发明结合量子计算机制和海鸥优化机制,有更好的全局收敛性和收敛速度,具有鲁棒性强,编程简单等优点。

    量子牧群机制自动演化PCNN的图像去噪方法

    公开(公告)号:CN112184594B

    公开(公告)日:2023-08-15

    申请号:CN202011096372.0

    申请日:2020-10-14

    Abstract: 本发明提供一种量子牧群机制自动演化PCNN的图像去噪方法,包括:根据椒盐噪声或高斯噪声的影响,得到含噪图像;对噪声污染后图像的进行强噪声滤波;计算自适应滤波窗口尺寸;建立自动演化PCNN图像滤波模型;初始化量子自私牧群的量子位置并设定参数;计算每个个体的适应值和生存价值;使用量子旋转门更新牧群领导者、牧群优势追随者、劣势追随者、牧群叛逃者以及捕食者的量子位置;判断是否达到量子牧群的最大迭代次数,是则终止迭代,返回最优参数;否则继续执行步骤六;输出牧群和捕食者的全局最优位置,并比较二者的生存价值,得出s个最优参数代入PCNN中,激活PCNN得到滤波图像并输出。本发明极大的提高了系统求解关键最优参数的效率和质量。

    一种基于Voronoi图的无人机集群路径规划方法

    公开(公告)号:CN113504793B

    公开(公告)日:2022-07-15

    申请号:CN202110783268.7

    申请日:2021-07-12

    Abstract: 本发明提供一种基于Voronoi图的无人机集群路径规划方法,本发明为解决二维栅格环境建模路径规划速率较慢,计算复杂度较大的问题,基于Voronoi图进行战场环境建模,通过减少路径中间节点,降低了算法进行节点遍历时所需的时间,同时设计出一种基于量子松鼠觅食的离散优化算法应用于路径规划,通过量子旋转门对量子松鼠的位置进行更新,更好的平衡了全局寻优能力与局部寻优能力,保证了路径规划结果的有效性。同时本发明为了适应战场环境的变化可能造成的路径失效问题,提供多条备选航迹,保证了路径的可选择性。

    基于量子星系搜索机制的双层异构网络功率分配方法

    公开(公告)号:CN113115456B

    公开(公告)日:2022-07-12

    申请号:CN202110357285.4

    申请日:2021-04-01

    Abstract: 本发明提供一种基于量子星系搜索机制的双层异构网络功率分配方法,包括:建立双层异构网络功率分配模型;初始化星体量子位置;更新量子旋转角,实现局部搜索的寻优搜索过程;判断是否达到最大循环次数K1,若未达到,返回步骤三;若达到,终止循环;选出更优的星系;判断是否达到最大循环次数K2,若未达到,返回步骤五;若达到,终止循环;判断标志变量flag;实现局部搜索的寻优搜索过程;判断是否达到最大循环次数K3,若未达到,返回步骤八;若达到,终止循环,将第g迭代中得到的作为最优结果,判断是否达到最大迭代次数G,若未达到,返回到步骤三;若达到,则终止迭代,将第G次迭代中的最优星体位置输出。本发明能获得比其他的智能求解机制更优秀的系统性能。

    基于量子礁鲨机制的无线传感器网络分簇路由方法

    公开(公告)号:CN113596951A

    公开(公告)日:2021-11-02

    申请号:CN202111027480.7

    申请日:2021-09-02

    Abstract: 本发明提供基于量子礁鲨机制的无线传感器网络分簇路由方法。此方法采用与LEACH相同的按“轮”周期运行方式,每轮包括动态成簇、动态簇首竞争和稳定数据传输三个阶段,以优化节点监测及控制数据在网络中的路由传递,均衡网络能耗,延长网络生命周期。在动态成簇阶段,根据当前网络状态判断是否需要动态成簇,若需要则采用量子礁鲨优化机制实现WSN节点动态成簇,以避免“热区”,其仿生于礁鲨捕食过程并结合模拟量子旋转门来演化量子礁鲨量子态,收敛速度快、收敛精度高,且具有更好的鲁棒性;在动态簇首竞争阶段,综合考虑节点剩余能量、节点与基站距离、节点与簇内其他节点距离三个因素并结合当前轮的网络特征来选举最优簇首。

    一种基于冲击噪声下最优相关熵的波达方向估计方法

    公开(公告)号:CN115856762A

    公开(公告)日:2023-03-28

    申请号:CN202211218910.8

    申请日:2022-10-07

    Abstract: 本发明提出了一种基于冲击噪声下最优相关熵的波达方向估计方法,步骤为建立冲击噪声下基于中值离差相关熵的极大似然宽带信号测向模型;连续量子黑猩猩搜索机制参数初始化;计算所有黑猩猩所在位置适应度值,初始化攻击者,阻拦者,追捕者和驱逐者的量子位置;由攻击者,阻拦者,追捕者和驱逐者的量子位置更新种群中其他黑猩猩量子位置;计算所有黑猩猩所在新位置适应度值,更新整个黑猩猩种群中攻击者,阻拦者,追捕者和驱逐者位置;判断是否到达最大次数;黑猩猩群体中攻击者量子位置根据映射规则映射成全局最优位置,得到信号的来波角度。本发明在冲击噪声环境下能有效测向,测向精度高,具有良好的解相干能力。

    冲击噪声环境下的量子瞭望非圆测向方法

    公开(公告)号:CN113109758B

    公开(公告)日:2022-12-13

    申请号:CN202110358005.1

    申请日:2021-04-01

    Abstract: 本发明提供一种冲击噪声环境下的量子瞭望非圆测向方法,包括:建立阵列接收非圆信号的数学模型,构建低阶实值加权协方差矩阵,利用低阶实值加权协方差矩阵构造极大似然测向方程;初始化量子瞭望群体和量子信仰空间,计算量子瞭望群体中量子位置的适应度并获得整个量子瞭望群体的最优量子位置;更新量子规范知识,根据瞭望机制进行量子形势知识空间更新;使用模拟量子旋转门通过量子信仰空间和量子瞭望机制实现量子个体的寻优搜索过程;判断是否达到最大迭代次数G,若未达到,令g=g+1,返回步骤三;否则终止迭代循环,将最后一代中的最优量子位置的映射态作为测向结果输出。本发明在低快拍、冲击噪声环境下具有鲁棒性,突破现有非圆测向方法的局限性。

Patent Agency Ranking