-
公开(公告)号:CN113595903B
公开(公告)日:2022-11-18
申请号:CN202110783612.2
申请日:2021-07-12
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于FCM分簇拓扑的无线传感器网络节点休眠调度方法,规定网络按“轮”周期运行,在动态成簇阶段,根据当前网络状态判断是否需要动态成簇,若需要则采用模糊C均值聚类FCM实现成簇阶段;在冗余节点判断阶段,根据某节点覆盖区域内邻居节点的位置分布情况来判断该节点是否冗余;在动态簇首选举阶段,综合考虑节点剩余能量、节点与基站距离、节点与簇内其他节点距离三个因素并结合当前网络状态来选举最优簇首;在冗余节点休眠调度阶段,调度非簇首冗余节点休眠、簇首冗余节点工作;在稳定数据传输阶段,本发明优化了数据转发传递路径,减少了网络能耗,延长了整个网络的生命周期。
-
公开(公告)号:CN113552530B
公开(公告)日:2022-07-15
申请号:CN202110723576.0
申请日:2021-06-29
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于量子鼠群的近场和远场源混合测向方法,在获得远场源角度的基础上构建出分离算子,通过该算子可以获得远场源四阶累积量矩阵,通过四阶累积量矩阵差分获得纯净的近场源四阶累积量矩阵,并通过量子鼠群机制进行参数搜索的相关过程,解决现有的混合源测向方法存在角度模糊和远近场信号源分离方法低效的技术难题。本发明可以快速的得到较精确的混合源测向结果,并且不存在量化误差,通过四阶累积量矩阵可以扩展阵列孔径,提高测向精度,相对于传统的近场和远场源混合测向方法速度更快、精度更高、突破了现有方法的应用局限。
-
公开(公告)号:CN113595903A
公开(公告)日:2021-11-02
申请号:CN202110783612.2
申请日:2021-07-12
Applicant: 哈尔滨工程大学
IPC: H04L12/715 , H04L12/721 , H04L12/733 , H04W24/02 , H04W52/02 , H04W52/06 , H04W84/18 , G06K9/62
Abstract: 本发明提供一种基于FCM分簇拓扑的无线传感器网络节点休眠调度方法,规定网络按“轮”周期运行,在动态成簇阶段,根据当前网络状态判断是否需要动态成簇,若需要则采用模糊C均值聚类FCM实现成簇阶段;在冗余节点判断阶段,根据某节点覆盖区域内邻居节点的位置分布情况来判断该节点是否冗余;在动态簇首选举阶段,综合考虑节点剩余能量、节点与基站距离、节点与簇内其他节点距离三个因素并结合当前网络状态来选举最优簇首;在冗余节点休眠调度阶段,调度非簇首冗余节点休眠、簇首冗余节点工作;在稳定数据传输阶段,本发明优化了数据转发传递路径,减少了网络能耗,延长了整个网络的生命周期。
-
公开(公告)号:CN113239628B
公开(公告)日:2023-10-03
申请号:CN202110611609.2
申请日:2021-06-02
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于量子海鸥演化机制加权Myriad滤波器设计方法,包括:构造通过冲击噪声信道的信号,并划分训练集和测试集;确定加权滤波器最优参数的目标函数;初始化量子海鸥机制的参数;计算适应度值,确定量子海鸥的最优量子位置;量子海鸥执行迁移操作;量子海鸥执行攻击操作并更新其量子位置;更新量子海鸥的适应度值及最优量子位置;判断是否达到最大迭代次数,若达到最大迭代次数,则终止迭代,继续往下执行;否则返回;使用具有最优权值参数和线性度参数的加权Myriad滤波器对测试集中的信号或待滤波信号进行处理。本发明结合量子计算机制和海鸥优化机制,有更好的全局收敛性和收敛速度,具有鲁棒性强,编程简单等优点。
-
公开(公告)号:CN113504793B
公开(公告)日:2022-07-15
申请号:CN202110783268.7
申请日:2021-07-12
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明提供一种基于Voronoi图的无人机集群路径规划方法,本发明为解决二维栅格环境建模路径规划速率较慢,计算复杂度较大的问题,基于Voronoi图进行战场环境建模,通过减少路径中间节点,降低了算法进行节点遍历时所需的时间,同时设计出一种基于量子松鼠觅食的离散优化算法应用于路径规划,通过量子旋转门对量子松鼠的位置进行更新,更好的平衡了全局寻优能力与局部寻优能力,保证了路径规划结果的有效性。同时本发明为了适应战场环境的变化可能造成的路径失效问题,提供多条备选航迹,保证了路径的可选择性。
-
公开(公告)号:CN113794659B
公开(公告)日:2023-09-22
申请号:CN202111050681.9
申请日:2021-09-08
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种信道估计与信号检测方法,建立OFDM系统数学模型;建立自动演化DNN信道估计与信号检测模型;初始化量子蜉蝣种群位置和量子速度并设定参数;对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置;进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新;对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新;迭代更新至最大迭代次数,把全局最优结果带入模型中,将接收的时频信号序列输入DNN模型恢复出码元并输出。本发明通过量子演化机制与蜉蝣种群原理结合,自动求解DNN模型所需最优参数,提高了DNN模型的信道估计与信号检测效果。
-
公开(公告)号:CN113794659A
公开(公告)日:2021-12-14
申请号:CN202111050681.9
申请日:2021-09-08
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种信道估计与信号检测方法,建立OFDM系统数学模型;建立自动演化DNN信道估计与信号检测模型;初始化量子蜉蝣种群位置和量子速度并设定参数;对初代量子蜉蝣种群位置进行适应度评价,得到量子雄性种群的最优位置,以及量子蜉蝣种群的全局最优位置;进行量子速度的更新,并通过更新后的量子速度完成量子蜉蝣位置的更新;对量子蜉蝣进行交配与变异操作,完成量子蜉蝣种群的淘汰与更新;迭代更新至最大迭代次数,把全局最优结果带入模型中,将接收的时频信号序列输入DNN模型恢复出码元并输出。本发明通过量子演化机制与蜉蝣种群原理结合,自动求解DNN模型所需最优参数,提高了DNN模型的信道估计与信号检测效果。
-
公开(公告)号:CN113552530A
公开(公告)日:2021-10-26
申请号:CN202110723576.0
申请日:2021-06-29
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于量子鼠群的近场和远场源混合测向方法,在获得远场源角度的基础上构建出分离算子,通过该算子可以获得远场源四阶累积量矩阵,通过四阶累积量矩阵差分获得纯净的近场源四阶累积量矩阵,并通过量子鼠群机制进行参数搜索的相关过程,解决现有的混合源测向方法存在角度模糊和远近场信号源分离方法低效的技术难题。本发明可以快速的得到较精确的混合源测向结果,并且不存在量化误差,通过四阶累积量矩阵可以扩展阵列孔径,提高测向精度,相对于传统的近场和远场源混合测向方法速度更快、精度更高、突破了现有方法的应用局限。
-
公开(公告)号:CN113504793A
公开(公告)日:2021-10-15
申请号:CN202110783268.7
申请日:2021-07-12
Applicant: 哈尔滨工程大学
IPC: G05D1/10
Abstract: 本发明提供一种基于Voronoi图的无人机集群路径规划方法,本发明为解决二维栅格环境建模路径规划速率较慢,计算复杂度较大的问题,基于Voronoi图进行战场环境建模,通过减少路径中间节点,降低了算法进行节点遍历时所需的时间,同时设计出一种基于量子松鼠觅食的离散优化算法应用于路径规划,通过量子旋转门对量子松鼠的位置进行更新,更好的平衡了全局寻优能力与局部寻优能力,保证了路径规划结果的有效性。同时本发明为了适应战场环境的变化可能造成的路径失效问题,提供多条备选航迹,保证了路径的可选择性。
-
公开(公告)号:CN113239628A
公开(公告)日:2021-08-10
申请号:CN202110611609.2
申请日:2021-06-02
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种基于量子海鸥演化机制加权Myriad滤波器设计方法,包括:构造通过冲击噪声信道的信号,并划分训练集和测试集;确定加权滤波器最优参数的目标函数;初始化量子海鸥机制的参数;计算适应度值,确定量子海鸥的最优量子位置;量子海鸥执行迁移操作;量子海鸥执行攻击操作并更新其量子位置;更新量子海鸥的适应度值及最优量子位置;判断是否达到最大迭代次数,若达到最大迭代次数,则终止迭代,继续往下执行;否则返回;使用具有最优权值参数和线性度参数的加权Myriad滤波器对测试集中的信号或待滤波信号进行处理。本发明结合量子计算机制和海鸥优化机制,有更好的全局收敛性和收敛速度,具有鲁棒性强,编程简单等优点。
-
-
-
-
-
-
-
-
-