-
公开(公告)号:CN103219274A
公开(公告)日:2013-07-24
申请号:CN201210017883.8
申请日:2012-01-19
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762
Abstract: 本发明提供一种基于量子阱结构来制备SGOI或sSOI的方法。根据本发明的方法,先在衬底表面形成由Si1-xGex/Ge或Si/Si1-xGex形成的量子阱结构的材料层后,进行退火处理;接着在已形成的结构表面先低温生长Si1-xGex和/或Si以修复表面,再形成由Si1-xGex/Ge或Si/Si1-xGex形成的量子阱结构的材料层,并进行退火处理,如此重复两三个周期后,再在所形成的结构表面低温生长Si1-xGex/Si的材料层,并采用智能剥离技术将已形成Si1-xGex/Si材料层转移到含氧衬底的含氧层表面,由此可形成高质量的SGOI或sSOI结构。
-
公开(公告)号:CN103187248A
公开(公告)日:2013-07-03
申请号:CN201110449534.9
申请日:2011-12-29
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/20 , H01L21/8238
Abstract: 本发明提供一种混合晶向绝缘体上锗晶片及器件的制备方法,通过在绝缘层上形成生长窗口在具有第一晶向的衬底上形成具有第二晶向的全局GOI,然后在具有第二晶向的衬底上形成具有第二晶向的Ge层,以制备出混合晶向绝缘体上锗晶片。在具有(100)晶向的Ge层制备NMOS器件,在具有(110)晶向的Ge层制备PMOS器件,在保证NMOS载流子迁移率的同时,大大地提高了PMOS载流子的迁移率,从而提高器件的整体驱动电流,降低了寄生电容,有利于电路集成度的提高。本发明工艺步骤简单,适用于半导体工业生产。
-
公开(公告)号:CN103165511A
公开(公告)日:2013-06-19
申请号:CN201110418133.7
申请日:2011-12-14
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762
Abstract: 本发明提供一种制备GOI的方法,采用生长Ge组分渐变的Si1-xGex层作为梯度缓冲层,以制备出高纯度、低缺陷的纯Ge层,然后通过离子注入在梯度缓冲层与纯Ge层的界面附近形成剥离层,接着进行退火使其剥离。采用本方法能达到低剂量离子注入实现GOI材料的制备,且制备出的GOI材料具有高纯度、低缺陷的特点。本方法工艺简单,适合工业生产。
-
公开(公告)号:CN103165409A
公开(公告)日:2013-06-19
申请号:CN201110419356.5
申请日:2011-12-14
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明提供一种嵌入超晶格层组制备应变Si的方法,该方法首先在Si衬底上外延一Ge组分为x的Si1-xGex层,其次在所述Si1-xGex层上外延一Si层,形成Si1-xGex/Si双层薄膜,然后多次重复外延所述Si1-xGex/Si双层薄膜,在所述Si衬底上制备出超晶格,形成包括至少一种所述超晶格的超晶格层组,接着在所述超晶格层组上外延一Ge组分为y的Si1-yGey层并使所述Si1-yGey层弛豫以形成弛豫Si1-yGey层,由所述超晶格层组和弛豫Si1-yGey层构成虚衬底,最后在所述弛豫Si1-yGey层上外延一Si层,以完成应变Si的制备。本发明通过降低制备应变Si所需的虚衬底厚度,大大节省了外延所需要的时间,不仅降低了外延所需要的成本,而且减少了由于长时间不间断进行外延而对外延设备造成的损伤。
-
公开(公告)号:CN103165408A
公开(公告)日:2013-06-19
申请号:CN201110418819.6
申请日:2011-12-14
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种嵌入超晶格制备应变Si的方法,该方法首先在Si衬底上外延一Ge组分为x的Si1-xGex层,其次在所述Si1-xGex层上外延一Ge组分为y的Si1-yGey层,且y≠x,形成Si1-xGex/Si1-yGey双层薄膜,然后多次重复外延所述Si1-xGex/Si1-yGey双层薄膜,以在所述Si衬底上制备出超晶格,接着在所述超晶格上外延一Ge组分为z的Si1-zGez层并使所述Si1-zGez层弛豫以形成弛豫Si1-zGez层,由所述超晶格和弛豫Si1-zGez层构成虚衬底,最后在所述弛豫Si1-zGez层上外延一Si层,以完成应变Si的制备。本发明通过降低制备应变Si所需的虚衬底厚度,大大节省了外延所需要的时间,不仅降低了外延所需要的成本,而且减少了由于长时间不间断进行外延而对外延设备造成的损伤。
-
公开(公告)号:CN103137547A
公开(公告)日:2013-06-05
申请号:CN201110384239.X
申请日:2011-11-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/768 , H01L21/8248
Abstract: 本发明提供一种绝缘体上Si/NiSi2衬底材料及其制备方法,通过对Ni与Si衬底进行退火反应生成NiSi2,并通过智能剥离工艺对其进行转移,以在传统SOI衬底的BOX层和顶层硅之间插入一层金属硅化物NiSi2,以代替常规SOI双极晶体管中的集电区重掺杂埋层,从而达到减小顶层硅厚度、简化工艺等目的。本发明的工艺简单,适用于大规模的工业生产。
-
公开(公告)号:CN103065938A
公开(公告)日:2013-04-24
申请号:CN201210593808.6
申请日:2012-12-31
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明涉及一种制备直接带隙Ge薄膜的方法,包括提供一GeOI衬底;对所述顶层锗纳米薄膜进行图形化处理,开出若干与底部所述埋氧层贯通的腐蚀窗口;湿法腐蚀直至埋氧层被彻底腐蚀掉,使得所述图形化的顶层锗纳米薄膜与硅衬底虚接触;提供一PDMS载体,所述PDMS载体与所述顶层锗纳米薄膜紧密接触,从而将与硅衬底虚接触的顶层锗纳米薄膜转移到PDMS载体上;将该PDMS载体两端夹紧,并反向施加机械拉伸使得顶层锗纳米薄膜随着PDMS载体的拉伸而形变,在其内部产生张应变。采用本发明的方法制备的直接带隙Ge薄膜应变大小可控,可用于光电器件;其具有低缺陷、低位错密度的特点;通过机械拉伸制备直接带隙Ge纳米薄膜的方法工艺简单,成本较低。
-
公开(公告)号:CN103065933A
公开(公告)日:2013-04-24
申请号:CN201110325364.3
申请日:2011-10-24
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种直接带隙Ge薄膜的制备方法及层叠结构,所述制备方法是首先在GaAs衬底上分别外延出InxGa1-xAs层和Ge层,其中,0.223﹤x≤1,并使InxGa1-xAs层的厚度不超过其生长在GaAs衬底上的临界厚度,使Ge层的厚度不超过其生长在InxGa1-xAs层上的临界厚度,以制备出Ge薄膜的样品;接着,对样品进行氦离子或氢离子注入,并使离子的峰值分布在所述InxGa1-xAs层与GaAs衬底相结合的界面下10nm~1000nm,然后对样品进行快速热退火以得到弛豫的InxGa1-xAs层和张应变Ge薄膜;依据InxGa1-xAs层的弛豫度得出InyGa1-yAs中In组分y,并在Ge层上外延出InyGa1-yAs层以减少样品中的缺陷密度,最后在InyGa1-yAs层上再外延顶层Ge薄膜,并使顶层Ge薄膜的厚度不超过其生长在所述InyGa1-yAs层上的临界厚度,以制备出直接带隙Ge薄膜。
-
公开(公告)号:CN103065931A
公开(公告)日:2013-04-24
申请号:CN201110324587.8
申请日:2011-10-24
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明提供一种制备半导体弛豫、应变材料并使其层转移的方法,首先在Si衬底上依次外延生长中间薄层、Si外延层、及顶Si1-xGex层,其中Ge组分x为0﹤x≤0.5,并使Si1-xGex层的厚度不超过其生长在Si外延层上的临界厚度;然后对样品进行氦离子注入及氢离子,并使离子的峰值分布在中间薄层,经退火后使顶Si1-xGex层弛豫;最后将样品与支撑衬底键合,并依次进行预键合、剥离、以及加强键合作业,最后经选择性腐蚀去除残余的中间薄层及Si外延层,实现材料的层转移,本发明由于两次注入的离子都分布在薄层处,形成氢氦共注,有效降低剥离所需注入剂量,进而达到了提高生产效率和降低生产成本的目的。
-
公开(公告)号:CN102590935B
公开(公告)日:2013-04-24
申请号:CN201110003997.2
申请日:2011-01-10
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
Abstract: 本发明提供一种锗悬臂梁式二维光子晶体微腔,包括:具有埋氧层、且表层为悬臂梁式锗材料层的半导体基底,其中,在锗材料层包含光子晶体微腔,所述光子晶体微腔由周期性排列的孔体所构成、但部分区域缺失孔体。此外,本发明还提供了该锗悬臂梁式二维光子晶体微腔的制备方法,即先在具有埋氧层、且表层为锗材料层的半导体基底的锗材料层中掺杂以形成n型重掺杂层,然后对锗材料层进行微机械加工形成光子晶体微腔,随后在部分区域进行光刻和刻蚀暴露出部分埋氧层,然后再进行湿法腐蚀,用以去除光子晶体微腔下的埋氧层,同时实现锗悬臂梁的释放。本发明的优点在于:能够通过外力调节悬臂梁上的应变从而实现锗向直接带隙的转变,并利用光子晶体微腔提高发光效率。
-
-
-
-
-
-
-
-
-