-
公开(公告)号:CN111349754B
公开(公告)日:2021-07-23
申请号:CN202010167125.9
申请日:2020-03-11
Applicant: 中北大学
IPC: C21C7/04 , C21C7/00 , C22C38/02 , C22C38/04 , C22C38/06 , C22C38/12 , C22C38/14 , C22C38/28 , C22C38/40 , C21D8/02 , C21D1/74 , C21D1/26
Abstract: 本发明公开了一种用于控制双相钢带状组织的熔体处理剂和一种通过熔体处理改善铸坯的铸态组织,从而控制轧态双相钢带状组织的方法,熔体处理剂主要由稀土、硅铁、硅钙合金、铝钙合金和其它微量合金元素组成,所述控制方法包括如下步骤:感应炉(或转炉、电炉)→LF精炼(选择性)→RH精炼(选择性)→喂线加入适量熔体处理剂→铸坯→热轧→冷轧→退火;在选择性的LF精炼后或RH精炼后通过喂线加入适量的熔体处理剂;铸坯、热轧、冷轧和退火等步骤根据钢种采用正常的生产工艺参数。利用本发明能有效改善双相钢的铸坯组织,实现冷轧退火态带状组织≤1.0级,折弯和扩孔率显著改善,并且生产效率大幅提高。
-
公开(公告)号:CN112795725A
公开(公告)日:2021-05-14
申请号:CN202011637457.5
申请日:2020-12-31
Applicant: 中北大学
Abstract: 本发明公开了一种通过熔体处理改善高碳马氏体不锈钢铸坯的铸态组织,从而控制一次碳化物的方法,所述控制方法包括如下步骤:感应炉或转炉、电炉→LF精炼→RH精炼→喂线加入适量熔体处理剂→铸坯;其中根据钢种的精炼工艺要求选择性进行LF精炼,如果不需要,直接进入下一步;根据钢种的精炼工艺要求选择性进行RH精炼,如果不需要,直接进入下一步;在选择性的LF精炼后或RH精炼后通过喂线加入适量熔体处理剂;铸坯根据钢种和生产工艺要求采用相应的铸造方法和正常的工艺参数生产。本发明能在有效细化高碳马氏体不锈钢一次碳化物的同时改善铸坯的成分偏析,为后续通过塑性变形进一步细化碳化物,以及通过回火实现二次碳化物的有效强化提供组织和成分基础。
-
公开(公告)号:CN109161815B
公开(公告)日:2020-11-10
申请号:CN201811105074.6
申请日:2018-09-21
Applicant: 中北大学
Abstract: 本发明属于钢铁冶炼领域,特别涉及一种高磷IF钢及其冶炼方法。本发明经过转炉冶炼、RH精炼和连铸完成;高磷IF钢成分为:C:0.0025~0.0030wt%,Mn:0.55~0.65wt%,Si:0.50~0.60wt%,S:≤0.01wt%,P:0.090~0.10wt%,Nb:0.020~0.025wt%,B:0.0005wt%,余量为Fe。采用本发明所述的方法浇注高磷IF钢时,其结晶器液面波动明显降低,铸坯中大型夹杂物含量较低,冷轧过程中轧材缺陷率降低,有明显的经济效益。
-
公开(公告)号:CN110951956A
公开(公告)日:2020-04-03
申请号:CN201911318107.X
申请日:2019-12-19
Applicant: 中北大学
Abstract: 本发明公开了一种适用于Fe-(24-25Mn)-(2-3)Al-(1-3)Si-(0.05-0.35)C-(0-0.3)V的超高塑性TWIP钢的生产方法。将TWIP钢在1200℃均质处理1h后热轧,始轧温度1150℃,终轧温度950℃。然后将热轧钢板在150-700℃区间选择一个温度保温5-10分钟,然后在选定温度进行温轧,直至目标厚度,轧制完成后空冷或水冷至室温。将温轧后的TWIP钢板在1000℃退火15-20分钟后,空冷至室温,可获得总延伸率达到120%的Fe-Mn-Al-Si系与总延伸率达到并超过100%的Fe-Mn-Al-Si-V系的超高塑性TWIP钢。本方法可大幅度提高TWIP钢的延伸率,改善TWIP钢轧制后塑性严重下降、微合金化TWIP钢塑性低等问题,为TWIP钢后续的加工、应用提供良好的组织及超高的延伸率。
-
公开(公告)号:CN107460405A
公开(公告)日:2017-12-12
申请号:CN201710724892.3
申请日:2017-08-22
Applicant: 中北大学
IPC: C22C38/04 , C22C38/02 , C22C38/16 , C22C38/08 , C22C38/06 , C22C38/12 , C22C38/14 , C22C38/60 , C22C38/18 , C22C38/20 , C22C38/22 , C22C38/24 , C22C38/26 , C22C38/28 , C22C38/32 , C22C38/34 , C22C38/36 , C22C38/38 , C22C38/40 , C22C38/42 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/50 , C22C38/54 , C22C38/56 , C22C38/58 , C22C33/06 , C21D1/26 , C21D1/18
CPC classification number: C22C38/04 , C21D1/18 , C21D1/26 , C22C33/06 , C22C38/002 , C22C38/005 , C22C38/02 , C22C38/06 , C22C38/08 , C22C38/12 , C22C38/14 , C22C38/16 , C22C38/18 , C22C38/20 , C22C38/22 , C22C38/24 , C22C38/26 , C22C38/28 , C22C38/32 , C22C38/34 , C22C38/36 , C22C38/38 , C22C38/40 , C22C38/42 , C22C38/44 , C22C38/46 , C22C38/48 , C22C38/50 , C22C38/54 , C22C38/56 , C22C38/58 , C22C38/60
Abstract: 本发明涉及一种超高硬度超高强度特质钢及其生产方法,它属于钢铁冶炼技术领域。本发明主要是解决现有耐磨钢存在的原材料成本高和难以进行机械加工的技术问题。本发明采用的技术方案是:超高硬度超高强度特质钢,其中:该特质钢的成分表达式为CaSibMncMdFee,其中M由Cu、Al、Ni、Nb、W、Bi、Ti、V、RE(稀土)、Cr、Ca、Mg、Mo、Sb、B、Zn、Zr中的2种或2种以上合金元素以任意重量百分比组成,a、b、c、d、e为重量百分比,且a+b+c+d+e=100%。本发明具有超高硬度和超高强度的优点。
-
公开(公告)号:CN118460826A
公开(公告)日:2024-08-09
申请号:CN202410919321.5
申请日:2024-07-10
Applicant: 中北大学
Abstract: 本发明属于金属材料热处理技术领域,涉及一种高强度中锰钢及其制备方法,采用均匀化退火、粗热轧、大变形温轧、高温回火、双相区退火的耦合工艺,制备的高强度中锰钢的屈服强度为1.36~1.48GPa,抗拉强度为1.60~1.73GPa,断后伸长率为15~21%。在几乎不牺牲塑性的前提下,协同提升了中锰钢屈服和抗拉强度,突破了中锰钢塑性有余而强度不足难题,实现了中锰钢强度和塑性的良好匹配,拓宽了其应用领域。
-
公开(公告)号:CN117921142A
公开(公告)日:2024-04-26
申请号:CN202410076543.5
申请日:2024-01-19
Applicant: 中北大学
Abstract: 本发明提供一种用于火力发电清洁系统的复合管道及其制备方法。本发明以316L不锈钢为基管材料,采用熔化极惰性气体保护焊技术,通过PLC控制的智能熔敷成型设备,将Fe‑Cr‑Mn合金焊丝电弧熔敷到不锈钢基管内部,通过调控熔敷工艺能制备出不同规格的Fe‑Cr‑Mn合金/不锈钢双金属复合管。本发明制备的双金属复合管缺陷少,界面结合强度高,晶粒细小且组织致密,因而具有较高的硬度和冲击韧性,硬度高达820HV,室温冲击功高达160J,抗拉强度高达860MPa,屈服强度高达620MPa,断后伸长率高达20%。本发明用于火力发电清洁系统的复合管道具有良好的综合力学性能,因而其使用寿命得到了大幅度提高。
-
公开(公告)号:CN116732297B
公开(公告)日:2023-10-20
申请号:CN202311031002.2
申请日:2023-08-16
Applicant: 中北大学
Abstract: 本发明属于金属材料热处理技术领域,涉及一种含铌高强双相钢及其制备方法和应用,控轧控冷工艺得到的双相钢热轧板卷进行回火得到含铌高强双相钢,所述含铌高强双相钢的组织由3~11%的铁素体和89~97%的马氏体组成,其晶粒为长条状,晶粒平均尺寸为1.8~2.1μm,屈服强度≥1050MPa,抗拉强度≥1150MPa,硬度≥40HRC,延伸率≥15.5%,能够满足汽车用钢的新的发展趋势的要求。
-
公开(公告)号:CN115109891B
公开(公告)日:2022-12-20
申请号:CN202210823071.6
申请日:2022-07-14
Applicant: 中北大学
IPC: C22C38/18
Abstract: 本发明属于钢铁冶炼技术领域,具体为一种高碳高铬含氮马氏体不锈钢及其碳化物细化方法,通过以N元素部分替代高碳高铬马氏体不锈钢中的C元素,调控C/N值,通过碳与氮的相互作用有效控制钢液凝固过程中碳化物的形核与长大行为,改善铸坯凝固组织,细化一次碳化物,提高成分均匀性。利用本发明方法生产的高碳高铬含氮马氏体不锈钢铸坯经后续的热塑性变形和热处理,在细小碳化物和含氮相的协同强化作用下,获得优良的综合力学性能,其硬度≥55 HRC,抗拉强度≥1850 MPa。
-
公开(公告)号:CN114214567B
公开(公告)日:2022-09-30
申请号:CN202111555888.1
申请日:2021-12-18
Applicant: 中北大学
IPC: C22C38/02 , C22C38/04 , C22C38/06 , C22C38/44 , C22C38/46 , C22C38/50 , C22C38/52 , C22C38/42 , C22C38/54 , C22C33/04 , C22B9/18 , C22B9/04 , C21D8/06 , C21D1/32 , C21D1/18
Abstract: 一种Ni3Al金属间化合物沉淀强化的高温轴承钢,属于钢铁冶炼技术领域,化学成分重量百分数为:C:0.15%~0.35%、Si:0.05~0.45%、Mn:0.15~0.45%、Cr:4.0~8.0%、Ni:4.0~8.0%、Al:1.2~4.8%、Mo:0.3~0.9%、V:0.3~0.9%、M:0.05~0.35%、P≤0.15%、S≤0.01%,余量Fe,其中合金元素Ni/Al=1.7~3.3,M为W、Zr、Nd、Co、Cu、B中1种或多种元素组成。经真空冶炼、真空电渣重熔冶炼、锻造或轧制、热处理等工艺制备出弥散分布的细小Ni3Al金属间化物沉淀强化的高温轴承钢。本发明制备的轴承钢经450~550℃回火后硬度不低于HRC 56,是制造高温、高速工况下工作的长寿命可靠轴承的理想材料。
-
-
-
-
-
-
-
-
-