-
公开(公告)号:CN114564015B
公开(公告)日:2024-06-11
申请号:CN202210170540.9
申请日:2022-02-24
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种拒止环境下的欠驱动无人艇分布式编队控制方法,包括:步骤1:建立欠驱动无人艇的编队模型;步骤2:设计纯方位角的欠驱动无人艇编队的控制器;步骤3:验证基于纯方位角的欠驱动无人艇编队控制策略的稳定性。本发明仅通过视觉和惯性传感器实现欠驱动无人艇的编队控制,避免使用通信网络和定位传感器,以实现拒止环境下的控制应用。
-
公开(公告)号:CN115617039B
公开(公告)日:2023-06-13
申请号:CN202211121621.6
申请日:2022-09-15
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 一种基于事件触发的分布式仿射无人艇编队控制器构建方法和无人艇编队控制方法,涉及一种分布式控制与仿射编队方法相结合的编队控制器,以及一种动态事件触发机制,属于无人艇控制技术领域,本发明为解决无人艇编队任务中存在的队形固定以及缺乏灵活性的问题,本发明提供的技术方案为:根据待编队的无人艇编队模型定义编队队形和应力矩阵;根据定义的编队队形,设计无人艇编队的分布式仿射变换艏向跟踪控制器;根据应力矩阵的性质,设计无人艇编队的分布式仿射变换位置跟踪控制器;并设计了无人艇编队控制方法,本发明适合应用于无人艇编队控制技术领域。
-
公开(公告)号:CN114047744B
公开(公告)日:2023-06-13
申请号:CN202111050090.1
申请日:2021-09-08
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明公开了一种基于采样通信的自适应反步滑模多无人艇编队控制方法,包括:建立无人船控制系统的运动学和动力学模型;基于运动学和动力学模型搭建基于采样通信的无人船编队协同控制器,并进行稳定分析;基于无人船编队协同控制器,设计自适应反步控制底层;基于自适应反步控制底层,设计跟踪控制子系统的运动学控制器;基于自适应反步控制底层,设计编队控制子系统的动力学控制器;根据Lyapunov稳定性定理,分析自适应反步控制底层的稳定性。该方法采用多个无人艇进行协作实现任务的分担,降低对单个机器人的性能要求,也可有效地克服单个无人艇运载能力不足问题,同时大大提高任务完成的可靠性,且具有更高的容错性、鲁棒性、适应性。
-
公开(公告)号:CN114706298A
公开(公告)日:2022-07-05
申请号:CN202111050109.2
申请日:2021-09-08
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明公开了一种基于预设性能的USV鲁棒无模型轨迹跟踪控制器设计方法,属于智能体自动控制领域。包括以下步骤:步骤一、建立水面无人艇的运动学和动力学模型;步骤二、根据水面无人艇的运动学和动力学模型,定义运动学、动力学误差并形成跟踪误差动力学模型;步骤三、进行转换函数的设计;步骤四、进行误差转换公式选取;步骤五、基于步骤三和步骤四的设计,建立误差矩阵定义和无约束动力学系统;步骤六、进行无模型控制器的设计。本发明可以避免现有研究中的自适应律计算过程而导致所需的计算载荷减下,通过调整预设性能矩阵的参数来保证理想的跟踪误差的瞬态和稳态行为,最终实现USV轨迹跟踪控制器设计。
-
公开(公告)号:CN114648686A
公开(公告)日:2022-06-21
申请号:CN202210237068.6
申请日:2022-03-10
Applicant: 哈尔滨工程大学
IPC: G06V20/00 , G06V10/46 , G06V10/764 , G06V10/80 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08 , G06T5/00 , G06T5/20 , G06T5/30
Abstract: 一种融合激光点云与RGB图像数据的逆光水面目标识别方法、系统及装置,涉及无人艇逆光水面目标识别领域。解决了无人艇逆光时造成的图像纹理、颜色等关键信息缺失使得水面目标识别任务算法经常出现图像信息识别不精缺的问题。本发明所述的逆光水面目标识别方法,包括:利用无人艇识别水面点云并进行分簇,获取水面目标点云簇的尺寸、点云簇距离以及点云簇ID;根据张正友标定法处理水面三维点云特征投影,获取点云特征矩阵和RGB原始图像;将获取的点云特征矩阵和RGB原始图像数据训练,获取神经网络模型权重;根据神经网络模型权重进行逆光环境下水面目标识别,获取目标信息。本发明用于无人艇在逆光条件下进行目标识别,适用于智能无人船舶领域。
-
-
公开(公告)号:CN112672063B
公开(公告)日:2022-02-11
申请号:CN202110033740.5
申请日:2021-01-11
Applicant: 哈尔滨工程大学
Abstract: 一种海豚自由游动的运动学记录装置,属于仿生流体力学领域。本发明针对现有技术中获取的海豚游动轨迹的数据误差大的问题。采用透明水箱用于为海豚提供游动空间,照明光源提供光照度;一号高速照相机对应透明水箱一侧壁居中设置,二号高速照相机对应透明水箱一端壁居中设置;一号激光发射装置对应透明水箱另一端壁设置,二号激光发射装置对应透明水箱一侧壁的相对侧壁设置;一号高速照相机上设置一号激光接收装置,二号高速照相机上设置二号激光接收装置;激光接收装置在接收激光发射装置发射的信号后,控制相应高速照相机快门的触发。本发明实现了海豚运动学数据的精确记录。
-
公开(公告)号:CN113848887A
公开(公告)日:2021-12-28
申请号:CN202111050187.2
申请日:2021-09-08
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明是一种基于MLP方法的欠驱动无人艇轨迹跟踪控制方法。进行欠驱动水面无人艇的建模,得到USV运动学模型;采用径向基函数神经网络来近似未建模的动力学函数,进行模型动力学转换;进行欠驱动动力学的模型转换,将USV跟踪误差系统扩展为三阶,以实现交叉跟踪动力学的相对度;转换USV集成鲁棒有限时间控制器,进行有限时间USV轨迹跟踪;进行稳定性分析。数值仿真结果表明,该控制器不仅具有良好的跟踪精度,而且具有良好的抗干扰能力。
-
公开(公告)号:CN113835340A
公开(公告)日:2021-12-24
申请号:CN202111050201.9
申请日:2021-09-08
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明提出了一种考虑输入量化和非线性死区的水下机器人无模型控制方法,所述方法包括构建水下机器人数学模型及无模型处理,简化考虑死区量化控制表达式,设计控制器和稳定性分析证明;本发明为了加强水下无人航行器的鲁棒性能和忽略高度耦合动力学的影响,结合滑模控制的无模型控制能极大程度上减轻了对于很难获得的模型参数的依赖;考虑到减少执行机构和控制模块的数据传输的频率,磁滞量化器将产生分段量化控制信号,来保证其的有限精度以及有效地避免了抖振问题;自适应参数估计方法用来补偿死区非线性估计的误差,能够减少计算的复杂性和计算的次数,使得控制精度和效果大大提升。
-
公开(公告)号:CN113835338A
公开(公告)日:2021-12-24
申请号:CN202111049350.3
申请日:2021-09-08
Applicant: 哈尔滨工程大学
IPC: G05B11/42
Abstract: 基于积分滑模的欠驱动无人艇的有限时间跟踪控制方法及装置,属于无人艇轨迹跟踪控制技术领域。目前欠驱动无人艇传统的反步设计过于复杂,传统的PID控制难以有效控制船舶跟踪。跟踪控制方法包括建立基于无人艇模型转换得到的高阶欠驱动无人艇动力学模型;根据所述高阶欠驱动无人艇动力学模型,设计的有限时间积分滑模控制器;根据所述高阶欠驱动无人艇动力学模型、所述有限时间积分滑模控制器,设计有限时间跟踪控制器并设计自适应律消除外界干扰不确定性。与现有技术相比,本发明的有益效果在于,避开了反步设计,有效降低了计算量;设计积分滑模控制器在外界干扰等情况下依然拥有良好的跟踪精度和快速响应能力。
-
-
-
-
-
-
-
-
-