-
公开(公告)号:CN110955980B
公开(公告)日:2023-08-01
申请号:CN201911274568.1
申请日:2019-12-12
Applicant: 哈尔滨工程大学
IPC: G06F30/20 , G01M10/00 , G06F119/14 , G06F111/10
Abstract: 本发明属于非线性水动力领域,具体涉及时滞水下超高速航行体稳定性分析方法。该方法包括以下步骤:步骤1:获取滑行力简化模型;步骤2:根据滑行力简化模型,得到纵向运动时滞简化模型;步骤3:根据纵向运动时滞简化模型,判定时滞系统的稳定性。本发明提供的时滞水下超高速航行体稳定性分析方法可以为时滞超高速航行体的稳定问题提供主要的参考计算模型,在该模型中对尾部滑行力进行简化处理,最终获得具有时滞效应的航行体纵向运动的简化模型。
-
-
公开(公告)号:CN109270837A
公开(公告)日:2019-01-25
申请号:CN201810855336.4
申请日:2018-07-31
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明提供一种水下超高速航行体级联控制方法,通过建立水下超高速超空泡航行体运动模型模块,设定模型参数,建立纵向运动误差模型模块,计算水下超高速航行体实际运动与设定运动轨迹的误差,建立级联子系统模块,子系统1采用标准滑模控制法消除干扰及系统误差,子系统2采用模糊滑模控制方法消除系统误差,建立控制效果仿真模块,根据实时仿真结果调整控制器的参数,以使得系统取得最佳的控制效果。本发明步骤完整、易于工程实现,将级联控制方法应用到水下超高速航行体的控制当中,能够简化航行体控制器的设计过程,并且能够为水下超高速航行体的稳定航行提供保障。
-
公开(公告)号:CN103207568B
公开(公告)日:2015-05-27
申请号:CN201310086077.0
申请日:2013-03-18
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明的目的在于提供一种抗舵机饱和的船舶航向自适应控制方法,包括以下步骤:对船舶航向运动进行数学描述,构造动态抗饱和补偿器,构造自适应backstepping控制器的第一状态向量z1,并构造z1的Lyapunov函数,进而取得虚拟控制;结合船舶航向角信息、航向角速度及动态抗饱和补偿器模块输出的补偿状态,求差计算出自适应backstepping控制器的第二状态向量z2,构造控制方法中总的Lyapunov函数,结合船舶航向稳定条件,获得带有抗饱和补偿器的船舶航向非线性自适应控制器,完成带有抗饱和补偿器的船舶航向非线性自适应控制方法。本发明思路明确、结构清晰合理、易于工程实现。
-
公开(公告)号:CN102768538B
公开(公告)日:2014-05-14
申请号:CN201210222871.9
申请日:2012-07-02
Applicant: 哈尔滨工程大学
IPC: G05D1/08
Abstract: 本发明公开了一种运动体BTT转弯控制姿态信息的获取方法及其实现装置,属于运动体动力学及控制、导航领域。本发明中所述的运动体航行在水下环境,航行速度大于100m/s,所述的获取方法首先进行运动体运动姿态信息的提取;然后获取运动体BTT转弯控制姿态信息,通过对运动体的BTT转弯控制姿态信息进行解耦,分类,将BTT控制信息分解为滚动通道姿态信息及俯仰-偏航通道姿态信息;分别对滚动通道姿态信息及俯仰-偏航通道姿态信息中的水动力系数进行估计,得到完整的运动体BTT转弯控制姿态信息。本发明能够保证水下运行环境中,航行速度大于100m/s的运动体的稳定转弯,使得包裹运动体的气幕保持稳定。
-
公开(公告)号:CN102768538A
公开(公告)日:2012-11-07
申请号:CN201210222871.9
申请日:2012-07-02
Applicant: 哈尔滨工程大学
IPC: G05D1/08
Abstract: 本发明公开了一种运动体BTT转弯控制姿态信息的获取方法及其实现装置,属于运动体动力学及控制、导航领域。本发明中所述的运动体航行在水下环境,航行速度大于100m/s,所述的获取方法首先进行运动体运动姿态信息的提取;然后获取运动体BTT转弯控制姿态信息,通过对运动体的BTT转弯控制姿态信息进行解耦,分类,将BTT控制信息分解为滚动通道姿态信息及俯仰-偏航通道姿态信息;分别对滚动通道姿态信息及俯仰-偏航通道姿态信息中的水动力系数进行估计,得到完整的运动体BTT转弯控制姿态信息。本发明能够保证水下运行环境中,航行速度大于100m/s的运动体的稳定转弯,使得包裹运动体的气幕保持稳定。
-
公开(公告)号:CN102156412B
公开(公告)日:2012-08-22
申请号:CN201010612245.1
申请日:2010-12-29
Applicant: 哈尔滨工程大学
IPC: G05B17/02
Abstract: 本发明提供的是一种水下超空泡航行体运动视景仿真方法。由包括超空泡航行体运动模型、稳定空泡流模型、控制规律、超空泡航行体飞行弹道模型组成的计算模块,建立二维模型、接收更新数据及消息的模型加载模块,接收实时操纵指令并进行二维图形实时显示及视图重绘的视图显示模块,提供统一接口获取轨道计算模型数据、同时将实时更新数据传递给各个视图的通信模块构成视景仿真系统。本发明将超空泡航行体的纵向运动控制与基于OpenGL的虚拟现实技术相结合,提供了一种不仅能通过仿真使用户更加直观的掌握超空泡航行体的运动规律,而且能够协助完成控制方案的设计、验证、筛选和确定的超空泡航行体视景仿真系统。
-
公开(公告)号:CN112230547A
公开(公告)日:2021-01-15
申请号:CN202011157446.7
申请日:2020-10-26
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明公开了一种超空泡航行体H∞控制器设计方法,包括:步骤1:建立水下超空泡航行体非线性动力学模型,设定模型参数,得到超空泡航行体纵平面运动方程;步骤2:根据航行体航行状态,计算超空泡航行体尾部浸没深度以及尾部浸没角度,得到超空泡航行体滑行力;步骤3:根据超空泡航行体的纵平面运动方程,建立线性矩阵不等式;步骤4:对线性矩阵不等式进行求解,得到状态反馈H∞控制器;步骤5:将状态反馈H∞控制器用于超空泡航行体并对系统进行仿真分析,当控制效果达到要求,则完成设计;否则执行步骤6;步骤6:调整状态反馈H∞控制器的加权系数并返回步骤5。所设计的H∞状态反馈控制器在一定的范围内能够保证超空泡航行体稳定运行,且满足H∞性能指标。
-
公开(公告)号:CN112132958A
公开(公告)日:2020-12-25
申请号:CN202011006447.1
申请日:2020-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于双目视觉的水下环境三维重建方法,包括如下步骤:步骤一:采集和获取水下图像,并对双目相机进行水下标定,得到所需的双目相机相关参数;步骤二:对采集到的水下图像进行预处理,包括图像去噪、图像增强、图像锐化、图像复原、水下图像去雾;步骤三:对步骤二所述预处理后的双目图像进行特征检测,并利用改良的Census与NCC融合的立体匹配算法进行立体匹配,得到含有深度信息的视差图;步骤四:使用引入移动最小二乘法的PCL三维重建方法对步骤三所述视差图进行三维重建,还原图像中的水下三维环境,本发明引入移动最小二乘法进行处理点云离散以及点云漏洞的问题,处理效果从多个角度直观地体现出三维效果,并能够还原水下三维环境。
-
公开(公告)号:CN112085728A
公开(公告)日:2020-12-15
申请号:CN202010979697.7
申请日:2020-09-17
Applicant: 哈尔滨工程大学
IPC: G06T7/00 , G06T7/11 , G06T7/136 , G06T5/00 , G06T5/40 , G06K9/62 , G06N3/04 , G06N3/08 , G01M3/04 , F17D5/06
Abstract: 本发明提供一种海底管道及泄漏点检测方法,包括如下步骤:步骤一:使用水下摄像机拍摄获取水下图像,然后对水下图像进行增强处理,使用高斯滤波法对图像去噪,使用直方图均衡化使图像更加清晰,使用低照度图像增强算法增强图像亮度;步骤二:建立水下环境海底管道光学图像检测数据集,使用YOLOv3算法对水下管道图像和视频进行检测实验;步骤三:制作水下环境海底管道光学图像分割数据集,对水下管道及泄漏目标进行图像分割,融合改进最新实例分割算法MASK R‑CNN算法和YOLACT算法,以实现最优的图像分割效果。本发明融合改进了MASK R‑CNN和YOLACT算法对海底管道及泄漏点进行图像分割。本发明可以满足海底管道泄漏点实时检测的需要,检测准确率较高。
-
-
-
-
-
-
-
-
-