-
公开(公告)号:CN115071933B
公开(公告)日:2024-07-30
申请号:CN202210849107.8
申请日:2022-07-19
Applicant: 哈尔滨工程大学
Abstract: 本发明提出一种仿海龟机器人,所述仿海龟机器人包括躯干,以及用于仿生鳍式推进的一对前肢机构和一对后肢机构,所述躯干包括浮力调节舱和重心调节舱,所述前肢机构为变刚度仿生鳍式推进机构,所述后肢机构为柔性仿生鳍式推进机构。仿海龟机器人的浮力调节舱通过压缩或拉伸波纹管,增加或降低机器人浮力,使机器人的浮力自主调节;仿海龟机器人的重心调节舱分别位于浮力调节舱两侧,重心调节舱内的重块同时前推或后移,会使机器人的重心迁移;若重块一前一后,会使机器人产生向左前或右前倾斜,从而可以使机器人在滑翔推进时实现转弯。
-
公开(公告)号:CN112085728B
公开(公告)日:2022-06-21
申请号:CN202010979697.7
申请日:2020-09-17
Applicant: 哈尔滨工程大学
IPC: G06T7/00 , G06T7/11 , G06T7/136 , G06T5/00 , G06T5/40 , G06N3/04 , G06N3/08 , G01M3/04 , F17D5/06
Abstract: 本发明提供一种海底管道及泄漏点检测方法,包括如下步骤:步骤一:使用水下摄像机拍摄获取水下图像,然后对水下图像进行增强处理,使用高斯滤波法对图像去噪,使用直方图均衡化使图像更加清晰,使用低照度图像增强算法增强图像亮度;步骤二:建立水下环境海底管道光学图像检测数据集,使用YOLOv3算法对水下管道图像和视频进行检测实验;步骤三:制作水下环境海底管道光学图像分割数据集,对水下管道及泄漏目标进行图像分割,融合改进最新实例分割算法MASK R‑CNN算法和YOLACT算法,以实现最优的图像分割效果。本发明融合改进了MASK R‑CNN和YOLACT算法对海底管道及泄漏点进行图像分割。本发明可以满足海底管道泄漏点实时检测的需要,检测准确率较高。
-
公开(公告)号:CN110244562B
公开(公告)日:2022-04-12
申请号:CN201910503842.1
申请日:2019-06-12
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 水下高速航行体执行器抗饱和补偿方法,属于船舶工程、控制科学与控制工程技术领域。水下高速航行体执行器抗饱和补偿器系统包括水下高速航行体纵向运动模块;未考虑饱和的纵向运动反馈线性化控制器模块;性能指标计算模块;抗饱和补偿模块;饱和检测模块;补偿效果仿真存储模块;其设计方法为首先根据牛顿运动学定律和动量矩定理,建立水下高速运动体纵向运动的动力学模型,然后按照反馈线性化控制器的设计步骤设计控制器,最后设计抗饱和补偿器。本发明所设计的补偿器可以弱化饱和非线性对系统性能的影响,提高水下高速航行体水下航行的稳定性。
-
公开(公告)号:CN103645736B
公开(公告)日:2016-05-25
申请号:CN201310652115.4
申请日:2013-12-05
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明公开一种基于非线性H∞逆优化输出反馈控制器的船舶航向运动控制方法,通过设计船舶航向运动及海浪干扰滤波器,结合船载罗经实时采集的船舶航向信息,估计出船舶舵作用产生的航向运动信息,以及海浪扰动信息,再结合估计得到的航向运动信息利用基于船舶航向局部优化H∞控制器而设计的船舶航向运动H∞逆优化控制器,得到最优控制舵角,最终使船舶沿预定航向运动;并设计了控制效果监控器实时记录船舶的航向角与控制舵角,判断船舶是否能够跟踪船舶航向参考模型,若跟踪效果不好,则及时调整控制器。
-
公开(公告)号:CN102156412A
公开(公告)日:2011-08-17
申请号:CN201010612245.1
申请日:2010-12-29
Applicant: 哈尔滨工程大学
IPC: G05B17/02
Abstract: 本发明提供的是一种水下超空泡航行体运动视景仿真方法。由包括超空泡航行体运动模型、稳定空泡流模型、控制规律、超空泡航行体飞行弹道模型组成的计算模块,建立二维模型、接收更新数据及消息的模型加载模块,接收实时操纵指令并进行二维图形实时显示及视图重绘的视图显示模块,提供统一接口获取轨道计算模型数据、同时将实时更新数据传递给各个视图的通信模块构成视景仿真系统。本发明将超空泡航行体的纵向运动控制与基于OpenGL的虚拟现实技术相结合,提供了一种不仅能通过仿真使用户更加直观的掌握超空泡航行体的运动规律,而且能够协助完成控制方案的设计、验证、筛选和确定的超空泡航行体视景仿真系统。
-
-
公开(公告)号:CN112132958B
公开(公告)日:2023-01-03
申请号:CN202011006447.1
申请日:2020-09-23
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种基于双目视觉的水下环境三维重建方法,包括如下步骤:步骤一:采集和获取水下图像,并对双目相机进行水下标定,得到所需的双目相机相关参数;步骤二:对采集到的水下图像进行预处理,包括图像去噪、图像增强、图像锐化、图像复原、水下图像去雾;步骤三:对步骤二所述预处理后的双目图像进行特征检测,并利用改良的Census与NCC融合的立体匹配算法进行立体匹配,得到含有深度信息的视差图;步骤四:使用引入移动最小二乘法的PCL三维重建方法对步骤三所述视差图进行三维重建,还原图像中的水下三维环境,本发明引入移动最小二乘法进行处理点云离散以及点云漏洞的问题,处理效果从多个角度直观地体现出三维效果,并能够还原水下三维环境。
-
公开(公告)号:CN115071933A
公开(公告)日:2022-09-20
申请号:CN202210849107.8
申请日:2022-07-19
Applicant: 哈尔滨工程大学
Abstract: 本发明提出一种仿海龟机器人,所述仿海龟机器人包括躯干,以及用于仿生鳍式推进的一对前肢机构和一对后肢机构,所述躯干包括浮力调节舱和重心调节舱,所述前肢机构为变刚度仿生鳍式推进机构,所述后肢机构为柔性仿生鳍式推进机构。仿海龟机器人的浮力调节舱通过压缩或拉伸波纹管,增加或降低机器人浮力,使机器人的浮力自主调节;仿海龟机器人的重心调节舱分别位于浮力调节舱两侧,重心调节舱内的重块同时前推或后移,会使机器人的重心迁移;若重块一前一后,会使机器人产生向左前或右前倾斜,从而可以使机器人在滑翔推进时实现转弯。
-
公开(公告)号:CN110955980A
公开(公告)日:2020-04-03
申请号:CN201911274568.1
申请日:2019-12-12
Applicant: 哈尔滨工程大学
IPC: G06F30/20 , G01M10/00 , G06F119/14 , G06F111/10
Abstract: 本发明属于非线性水动力领域,具体涉及时滞水下超高速航行体稳定性分析方法。该方法包括以下步骤:步骤1:获取滑行力简化模型;步骤2:根据滑行力简化模型,得到纵向运动时滞简化模型;步骤3:根据纵向运动时滞简化模型,判定时滞系统的稳定性。本发明提供的时滞水下超高速航行体稳定性分析方法可以为时滞超高速航行体的稳定问题提供主要的参考计算模型,在该模型中对尾部滑行力进行简化处理,最终获得具有时滞效应的航行体纵向运动的简化模型。
-
公开(公告)号:CN110363796A
公开(公告)日:2019-10-22
申请号:CN201810510986.5
申请日:2018-05-25
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于轻量卷积神经网络结构的前视声纳运动目标跟踪方法。(1)检测出目标首次出现时的那一帧图像的所在位置,经过去均值、L2正则化的预处理;(2)采用无需训练的两层卷积神经网络结构,对图像进行滑动窗口采样,采用k-means聚类的方法从图像块中聚类出滤波器作为卷积核,对目标图像周围的区域随机采样出m个样本,对每一个样本用滑动窗口的方法采样L个图像块;(3)采用稀疏表达的方式表示特征;(4)通过粒子滤波的跟踪框架进行跟踪。本发明易于使用、能很好地克服前视声纳图像中严重的噪声干扰、对目标的跟踪效果更好。该方法很大程度上提高了系统的处理帧率,使得跟踪过程的实时性有了很大保障。
-
-
-
-
-
-
-
-
-