-
公开(公告)号:CN116994137B
公开(公告)日:2025-01-28
申请号:CN202310979011.8
申请日:2023-08-04
Applicant: 哈尔滨工业大学
IPC: G06V20/10 , G06V10/82 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/764 , G06N3/0464 , G06N3/08
Abstract: 一种基于多尺度形变建模和区域精细提取的目标检测方法,属于目标检测与识别技术领域。方法如下:设计多尺度特征动态融合模块,获得多尺度形变目标的候选区域提取结果;将候选区域提取结果分类,获得用最小边界矩形框标记的所有目标区域;提出定制化的结合二进制交叉熵、偏置损失和结构相似度的显著区域精细提取损失函数,实现复杂场景干扰下舰船目标的准确检测。本发明实现目标多尺度形变特征的增强学习,提高检测网络对目标与复杂背景的分辨能力,可实现在云层、光照阴影、港口设施等复杂场景下的舰船目标准确检测,为航空管制、海上救援和港口管理等军民应用提供有力支持。
-
公开(公告)号:CN118822841A
公开(公告)日:2024-10-22
申请号:CN202410829403.0
申请日:2024-06-25
Applicant: 哈尔滨工业大学
IPC: G06T3/4038 , G06T5/50 , G06V10/764 , G06T5/70 , G06N3/0475 , G06N3/098 , G06N3/0464 , G06N3/084 , G06N3/048 , G06N5/04
Abstract: 本发明公开了一种基于扩散模型的条件引导图像翻译方法,所述方法提出一种结合扩散模型与条件生成对抗网络的两阶段图像翻译模型,阶段一预训练ResAttNet1提取深度特征,利用深度特征图中包含的丰富语义信息,作为条件生成对抗网络的条件信息,引导条件生成对抗网络完成图像翻译。阶段二利用训练好的ResAttNet1和参数随机初始化的ResAttNet2分别提取全局特征信息和样本级深度特征,采用条件生成对抗网络与扩散模型联合训练的策略,使用一个轻量的扩散模型细化深度特征,最终构建一个训练稳定、生成图像保真度好、采样速率高的图像翻译网络。该方法能够提高条件信息的质量和准确性,有效提升CGAN的图像翻译性能。
-
公开(公告)号:CN117557857A
公开(公告)日:2024-02-13
申请号:CN202311574622.0
申请日:2023-11-23
Applicant: 哈尔滨工业大学
IPC: G06V10/764 , G06V10/82 , G06V10/44 , G06N3/0464 , G06N3/048 , G06N3/082 , G06N3/096
Abstract: 本发明公开了一种结合渐进式引导蒸馏和结构重构的检测网络轻量化方法,所述方法把MobileNet v3Block中的SE注意力机制替换为CBAM注意力机制,从空间和通道两个方面提升特征显著性,然后将目标检测网络中的卷积模块替换为改进后的MobileNet v3Block模块;再通过基于批归一化的剪枝方剔除重要性低的冗余通道,以进一步提升模型的轻量程度。本发明将渐进式引导蒸馏从图像分类任务扩展到目标检测任务,改进基于主干特征映射的知识蒸馏方法,通过教师网络提供先验知识,使用教师网络的中间表示特征作为提示辅助训练,以助教网络作为媒介平衡学生网络的检测精度和速度。
-
公开(公告)号:CN116434074A
公开(公告)日:2023-07-14
申请号:CN202310019335.7
申请日:2023-01-06
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于邻支互补显著性和多先验稀疏表征的目标识别方法,所述方法包括如下步骤:步骤1:提出邻支互补显著性提取网络,挖掘图像深层次、语义一致性信息,提取多尺度目标的候选显著区域;步骤2:通过结合目标多先验信息的稀疏表征分类器,抑制显著性提取网络可能产生的虚警,实现复杂场景下舰船目标的准确识别。该方法通过深度显著性特征提取网络挖掘图像中舰船目标的显著区域特征,与图像数据的多先验稀疏表征分类方法结合,不但可以充分发挥深度网络多层级提取图像特征的优势,而且对物体部分遮挡复杂海杂波、港口设施、光照阴影等复杂环境干扰具有鲁棒性的特点,可为港口救援、海上交通维护等应用提供支持。
-
公开(公告)号:CN115641507A
公开(公告)日:2023-01-24
申请号:CN202211387533.0
申请日:2022-11-07
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于自适应多层级融合的遥感图像小尺度面目标检测方法,所述方法包括如下步骤:步骤1:使用主干特征提取网络提取输入图像的浅层和深层的多层级特征图,下采样层级分别为4、8、16、32倍;步骤2:使用自适应融合权重的多层次特征提取架构实现对步骤1中不同下采样级数特征的融合;步骤3:选用融合后的下采样级数为4倍和8倍的高分辨率特征层进行目标位置和类别信息的预测,得到最终的检测结果。该方法能够实现对不同层级中语义和结构信息的有效融合,提高网络对小尺度目标的特征提取和检测定位能力,有效减少场景中虚警源对目标检测的干扰,从而实现遥感图像小尺度目标的高检测率、低虚警率的检测。
-
公开(公告)号:CN114137005A
公开(公告)日:2022-03-04
申请号:CN202111486350.X
申请日:2021-12-07
Applicant: 哈尔滨工业大学
IPC: G01N23/20 , G01N23/207
Abstract: 本发明公开了一种分布式多模衍射成像方法,所述方法包括如下步骤:步骤一:根据应用需求设计分布式多模衍射成像系统,获取多视场、多谱段的时序图像;步骤二:对获取的多视场、多谱段的时序图像进行配准;步骤三:融合多视场、多谱段、多时相信息,实现超分辨率重建;步骤四:利用图像复原算法提升图像传递函数,去除非设计级次衍射光产生的背景辐射,得到高分辨率图像。本发明利用分布式排列的多个子衍射系统单独成像,且具有不同探测谱段,图像间存在亚像素偏移,获取多视场、多谱段、多时相图像数据后,通过融合、超分、复原算法最终获取高分辨率图像,具有高分辨率、轻量化、成本低等优势,为高分辨率光学卫星载荷跨越式发展提供了技术途径。
-
公开(公告)号:CN109697431B
公开(公告)日:2021-11-23
申请号:CN201811641904.7
申请日:2018-12-29
Applicant: 哈尔滨工业大学
Abstract: 一种基于高光谱图像的弱小目标检测方法,具体方案如下,步骤一:利用信杂比进行目标可探测性分析,通过计算不同谱段目标相对其邻域背景的信杂比,优选出目标与背景具有的差异性由大到小的若干个谱段;步骤二:在优选的目标与背景间差异性最大的谱段进行弱小目标提取,利用多结构元素数学形态学方法抑制背景,通过自适应阈值分割得到若干个疑似目标;步骤三:利用优选探测谱段光谱信息,将不同场景中目标与背景的混叠光谱作为目标位于不同场景时的标准光谱,基于光谱角匹配原理,计算疑似目标和所处背景的混叠光谱与标准光谱的相似度,实现对弱小目标的确认。本发明属于目标探测与识别技术领域,可实现复杂环境背景中远距离弱小目标的高效确认。
-
公开(公告)号:CN108122255B
公开(公告)日:2021-10-22
申请号:CN201711388109.7
申请日:2017-12-20
Applicant: 哈尔滨工业大学
Abstract: 一种基于梯形与圆形组合地标的无人机位姿估计方法,属于图像处理技术领域。所述方法如下:步骤1、无人机对地标图案成像二值化处理分割出地标图案,基于形态学滤波去除孤立噪声;步骤2、提取地标边缘,利用霍夫变换提取地标中梯形轮廓直线信息,利用最小二乘法拟合椭圆方程并计算椭圆参数;步骤3、根据步骤2解算出的椭圆参数估计无人机姿态参数;步骤4、建立无人机对地成像模型,利用梯形轮廓直线信息确定梯形四个顶点坐标估计位置参数。本发明针对无人机视觉导航中的位姿精确估计和以及自主着陆等问题,基于梯形和圆形组合的地标图案,根据几何成像特性估计姿态参数,简化共线方程求解模型,进而求解位置参数,计算过程简单,更加适合实际工程应用。
-
公开(公告)号:CN109407311B
公开(公告)日:2021-06-08
申请号:CN201811626144.2
申请日:2018-12-28
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于相位差异法的衍射光学成像系统波前反演算法,所述算法包括如下步骤:步骤一:建立包含衍射光学成像系统衍射效率和空间移变特性的衍射光学成像特性表征模型;步骤二:基于最大似然方法建立针对衍射光学成像系统的相位差异波前反演模型;步骤三:基于标量衍射理论推导离焦衍射位相表达式及离焦衍射效率表征模型;步骤四:针对衍射成像的空间移变特性,基于等晕区分块思想对焦面空变退化图像和离焦面空变退化图像进行分块处理;步骤五:利用基于模拟退火的粒子群算法对相位差异波前反演模型进行全局最优化求解,输出不同视场对应波前信息。本发明可为未来超大口径薄膜衍射光学成像系统的空间应用提供支持。
-
公开(公告)号:CN105741245A
公开(公告)日:2016-07-06
申请号:CN201610066218.6
申请日:2016-01-30
Applicant: 哈尔滨工业大学
IPC: G06T5/00
CPC classification number: G06T5/009 , G06T2207/10004 , G06T2207/10024
Abstract: 本发明公开了一种基于灰度变换的自适应对比度增强算法,其包括如下步骤:步骤1:通过建立对比度增强阈值与图像灰度动态范围间的函数关系,实现阈值的自适应选取;步骤2:根据对比度增强阈值和图像特性,确定不同灰度动态图像对比度增强所需的增益系数;步骤3:基于步骤1和2得出的对比度增强阈值和增益系数,对输入图像进行灰度线性变换;步骤4:结合灰度变换后的图像特性进一步修正其灰度动态范围,并调整图像亮度。本发明适用于自适应增强灰度图像以及彩色图像的对比度,使图像对比度增强、更加清晰、色调更加鲜明,有效地提高图像的视觉效果。
-
-
-
-
-
-
-
-
-