-
公开(公告)号:CN118864269A
公开(公告)日:2024-10-29
申请号:CN202410872983.1
申请日:2024-07-01
Applicant: 哈尔滨工业大学
IPC: G06T5/50 , G06T3/4053 , G06T3/4046 , G06T3/4038 , G06T7/11 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于可变形卷积的多帧红外小目标超分方法,所述方法提出了一个适用于多帧红外小目标超分变率的DCUNet网络,融合多帧红外小目标图像的多尺度信息,并恢复目标的空间细节信息;提出了多帧对齐的TADCM模块,隐式的将帧间运动状态复杂、形态和能量时序变化的目标对齐,从而充分利用帧间信息以进行互相补充,提升暗弱目标的空间显著性;提出了利用特征监督引导可变形卷积学习的方法,即在网络最后两层特征层输出目标分割结果,并用带像素级标记的目标分割真值作为监督,对编码和上采样过程进行约束,提升可变形卷积的准确性,使目标的边缘和形态能够被充分恢复。
-
公开(公告)号:CN119478447A
公开(公告)日:2025-02-18
申请号:CN202411508586.2
申请日:2024-10-28
Applicant: 哈尔滨工业大学
IPC: G06V10/46 , G06V10/44 , G06V10/52 , G06V10/62 , G06V10/80 , G06V10/26 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种局部运动感知的红外小目标特征增强方法,所述方法包括如下步骤:步骤一:加载红外序列图像,选择连续T帧图像作为网络输入,利用主干网络提取图像特征;步骤二:利用粗略运动估计模块CME提取粗略的目标帧间运动信息,生成前向光流和后向光流;步骤三:利用能量增强模块EnE结合光流和可变形卷积对齐多帧序列,并采用卷积核大小为1×1的3D卷积增强目标特征;步骤四:利用引导光流学习的特征增强任务头输出增强后的红外图像,通过目标分割任务头将多尺度特征融合,输出目标分割结果,进而引导特征增强网络的学习。该方法可以有效地适应目标暗弱以及背景运动的场景,输出高质量的红外多帧运动小目标的增强图像。
-
公开(公告)号:CN118015464B
公开(公告)日:2025-01-28
申请号:CN202410164684.2
申请日:2024-02-05
Applicant: 哈尔滨工业大学
IPC: G06V20/10 , G01N21/84 , G06V10/762 , G06V10/82 , G06N3/126
Abstract: 本发明公开了一种基于遗传算法的面向检测任务的高光谱谱段优选方法,所述方法如下:加载高光谱图像,将高光谱图像高度宽度两个维度扁平化为一维张量,对处理后的高光谱图像进行二进制染色体编码;利用光谱信杂比构建适应度函数模型,通过聚类算法将相似的背景归类为同一簇,对每一类背景设置一个权重,针对不同检测目标,采取两种策略加权抑制背景,进一步提高光谱信杂比估计背景精度;利用遗传算法的选择操作、交叉操作、变异操作随机全局搜索优化,计算个体适应度,搜索适应度最小的个体,得出谱段优选结果。本发明使用两组高光谱数据集对算法测试验证,证明了该方法可以有效地筛选出与全谱段探测能力相当或更优秀的谱段子集。
-
公开(公告)号:CN118015464A
公开(公告)日:2024-05-10
申请号:CN202410164684.2
申请日:2024-02-05
Applicant: 哈尔滨工业大学
IPC: G06V20/10 , G01N21/84 , G06V10/762 , G06V10/82 , G06N3/126
Abstract: 本发明公开了一种基于遗传算法的面向检测任务的高光谱谱段优选方法,所述方法如下:加载高光谱图像,将高光谱图像高度宽度两个维度扁平化为一维张量,对处理后的高光谱图像进行二进制染色体编码;利用光谱信杂比构建适应度函数模型,通过聚类算法将相似的背景归类为同一簇,对每一类背景设置一个权重,针对不同检测目标,采取两种策略加权抑制背景,进一步提高光谱信杂比估计背景精度;利用遗传算法的选择操作、交叉操作、变异操作随机全局搜索优化,计算个体适应度,搜索适应度最小的个体,得出谱段优选结果。本发明使用两组高光谱数据集对算法测试验证,证明了该方法可以有效地筛选出与全谱段探测能力相当或更优秀的谱段子集。
-
公开(公告)号:CN119478447B
公开(公告)日:2025-04-29
申请号:CN202411508586.2
申请日:2024-10-28
Applicant: 哈尔滨工业大学
IPC: G06V10/46 , G06V10/44 , G06V10/52 , G06V10/62 , G06V10/80 , G06V10/26 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种局部运动感知的红外小目标特征增强方法,所述方法包括如下步骤:步骤一:加载红外序列图像,选择连续T帧图像作为网络输入,利用主干网络提取图像特征;步骤二:利用粗略运动估计模块CME提取粗略的目标帧间运动信息,生成前向光流和后向光流;步骤三:利用能量增强模块EnE结合光流和可变形卷积对齐多帧序列,并采用卷积核大小为1×1的3D卷积增强目标特征;步骤四:利用引导光流学习的特征增强任务头输出增强后的红外图像,通过目标分割任务头将多尺度特征融合,输出目标分割结果,进而引导特征增强网络的学习。该方法可以有效地适应目标暗弱以及背景运动的场景,输出高质量的红外多帧运动小目标的增强图像。
-
公开(公告)号:CN118822841A
公开(公告)日:2024-10-22
申请号:CN202410829403.0
申请日:2024-06-25
Applicant: 哈尔滨工业大学
IPC: G06T3/4038 , G06T5/50 , G06V10/764 , G06T5/70 , G06N3/0475 , G06N3/098 , G06N3/0464 , G06N3/084 , G06N3/048 , G06N5/04
Abstract: 本发明公开了一种基于扩散模型的条件引导图像翻译方法,所述方法提出一种结合扩散模型与条件生成对抗网络的两阶段图像翻译模型,阶段一预训练ResAttNet1提取深度特征,利用深度特征图中包含的丰富语义信息,作为条件生成对抗网络的条件信息,引导条件生成对抗网络完成图像翻译。阶段二利用训练好的ResAttNet1和参数随机初始化的ResAttNet2分别提取全局特征信息和样本级深度特征,采用条件生成对抗网络与扩散模型联合训练的策略,使用一个轻量的扩散模型细化深度特征,最终构建一个训练稳定、生成图像保真度好、采样速率高的图像翻译网络。该方法能够提高条件信息的质量和准确性,有效提升CGAN的图像翻译性能。
-
-
-
-
-