-
公开(公告)号:CN104913974B
公开(公告)日:2017-12-22
申请号:CN201510238751.1
申请日:2015-05-12
Applicant: 吉林大学
Abstract: 本发明涉及一种材料微观力学性能双轴拉伸‑疲劳测试系统及其测试方法,属于精密科学仪器领域。测试方法通过对试件施加正交的拉伸载荷,使试件在一个平面上存在两个相互垂直的拉应力,同时在拉伸载荷的基础上还可以对试件施加疲劳载荷,用于研究不同载荷形式及载荷大小情况下材料的微观力学性能。系统由精密加载‑传动单元、疲劳单元、力学和变形信号检测单元、试件夹持单元等部分组成。优点在于:测试系统结构新颖紧凑,可以分别实现单轴拉伸测试、双轴拉伸测试、单轴拉伸‑疲劳测试、双轴拉伸‑疲劳测试,与光学显微镜有良好的兼容性,可动态研究拉伸‑疲劳载荷作用情况下材料的微观组织结构与变形损伤机制的相关性规律。
-
公开(公告)号:CN104897460A
公开(公告)日:2015-09-09
申请号:CN201510253407.X
申请日:2015-05-19
Applicant: 吉林大学
Abstract: 本发明涉及一种多载荷耦合加载的试件夹具及其多物理场耦合加载方法,属于材料微观力学性能测试领域。通过在夹具上加工凹槽,试件置入凹槽后通过压板压紧,实现夹具向试件施加拉伸、弯曲、扭转等机械载荷。通过氮化硅加热片与试件接触进行传导加热,并通过热电偶实现温度反馈,实现对被测样品施加热场加载。通过向试件通入可控电流实现对试件样品的电场加载。通过两个磁感应线圈,实现对被测样品的磁场加载。结构简单紧凑、方法科学合理、性能稳定可靠,可实现对被测样品材料的大范围温度加载、精确的电流加载以及可控的磁场加载,能够为材料试验提供更接近服役条件下的复合载荷加载及热场、电场和磁场的模拟,具有重要的理论意义和应用价值。
-
公开(公告)号:CN117929091A
公开(公告)日:2024-04-26
申请号:CN202410094778.7
申请日:2024-01-23
Applicant: 吉林大学
IPC: G01N3/02 , G01N3/04 , G01N3/06 , G01N3/08 , G01N3/22 , G01N23/2251 , G01N23/20091 , G01N23/203 , G01N21/65
Abstract: 本发明公开一种扫描电镜多技术联用的力学性能原位测试装置及分析方法,属于精密科学仪器与材料微观力学性能测试技术领域,拉压加载单元对试样进行拉压加载,位移平台将试样移动到扫描电子显微镜的SE模式位置和Raman模式位置,转动加载单元驱动试样同步转动,在不同的角度进行原位测试。将获取的不同时空中多尺度数据以时间坐标最小公倍数对齐至载荷‑位移曲线中,将试样多种姿态由坐标系旋转平移变换空间配准至参考坐标系中,并构建多源数据融合分析函数。本发明能够对试样进行SEM、EDS、EBSD、SEM‑DIC和Raman原位测试,能够多层次、深度揭示材料的变形损伤失效机理,为科学建立复杂载荷下材料组织结构演化与宏观性能动态响应间的关系提供更新颖的技术手段。
-
公开(公告)号:CN117054273A
公开(公告)日:2023-11-14
申请号:CN202310655806.3
申请日:2023-06-05
Applicant: 吉林大学
IPC: G01N3/42 , G01N3/02 , G01N23/2251 , G01N23/2206 , G01N23/2202 , G01N23/203 , G01N23/20058 , G01N23/20008
Abstract: 本发明涉及一种双模式原位表征材料亚表面区域的压痕测试方法及测试装置,适用于扫描电镜内原位观测,将试样与楔形压头分别固定于原位测试装置的夹具中,并使试样已抛光一侧位于扫描电镜内电子背散射衍射仪可观测位置与角度,在楔形压头压入试样表面的过程中,通过扫描电镜原位获取压痕接触表面下方区域的形貌变化,同时扫描电镜内的电子背散射衍射仪同步获取压痕接触表面下方区域的晶体结构变化,可进一步计算该区域的晶体取向变化与位错分布,结构简单可操作性强、表征效果好,在扫描电镜内获取压痕接触表面下方区域变形损伤过程,提升对晶体材料微区载荷作用下接触行为的理解。
-
公开(公告)号:CN111921568B
公开(公告)日:2023-10-20
申请号:CN202010674799.8
申请日:2020-07-14
Applicant: 吉林大学
Abstract: 本发明涉及一种接触/氛围混合变温腔室及控温方法,属于精密仪器及材料测试技术领域。包括上制冷腔、下制冷腔、换点平台、底座,所述上制冷腔与下制冷腔之间通过上腔盖、下腔体上的定位凹槽定位,并通过多组连接压杆组件锁紧;试件通过真空吸附固定在下制冷腔中,下制冷腔通过下腔体固定到底座上,换点平台通过“N”形连接板固定在底座上,实现对试件和功能压头的温度控制。腔室整体尺寸小,可置于真空/氛围腔中隔绝易凝气体,腔室中心安装有钕磁铁,上下腔室留有中心孔,方便对试件进行物性测试、力学性能测试以及原位观测,为变温环境下材料的性能测试提供了仪器支持和技术手段。
-
公开(公告)号:CN115728164A
公开(公告)日:2023-03-03
申请号:CN202211359824.9
申请日:2022-11-02
Applicant: 吉林大学
Abstract: 本发明涉及一种极低温强磁场环境下的微纳米压痕测试装置与测试方法,装置安装在无液氦变温超导磁体系统的样品杆末端后插入到样品腔中,通过自主定制的无液氦变温超导磁体系统为样品腔提供一个稳定可调的极低温强磁场环境,压痕测试过程中,控制加载平台精密驱动,带动被测试样进行压入操作,通过激光探头分别测量压头与加载平台的位移,即可根据本发明提出的测试方法得到压痕过程中的P‑h曲线,从而实现在极低温(10K‑300K)‑强磁场(9T)环境下对被测试样开展硬度、弹性模量等基本力学参量的测试分析,本发明将为极端环境下材料使役性能测试与极低温和强磁场下新物性、新现象、新规律研究提供新颖的手段工具。
-
公开(公告)号:CN110736672B
公开(公告)日:2022-05-24
申请号:CN201911105056.2
申请日:2019-11-13
Applicant: 吉林大学
Abstract: 本发明涉及一种常压下浸没式连续变低温微纳米压痕测试装置,属于精密仪器技术领域。可实现在常压环境下对被测试验样品快速开展连续可变低温的微纳米压痕测试。包括宏定位驱动单元、微定位驱动单元、压入载荷/位移信号采集及控制单元、低温单元和夹持单元。通过宏定位驱动单元改变驱动微定位驱动单元与被测试样的相对位置,经过接触探测后,进而控制微定位驱动单元进行微纳米压痕测试;压入载荷/位移信号采集及控制单元实现压痕测试过程中的精确控制与信号采集;低温单元实现被测试样与测试压头的共同降温,夹持单元实现被测试样在低温液体中的固定。优点在于:结构简单,易于操作,能消除微纳米压痕测试中的热漂移问题。
-
公开(公告)号:CN108535129B
公开(公告)日:2022-04-01
申请号:CN201810336308.1
申请日:2018-04-16
Applicant: 吉林大学
IPC: G01N3/42
Abstract: 本发明涉及一种显微组件下大行程低温漂的低温微纳米压痕测试系统,属于精密仪器技术领域。包括真空室系统模块、滑动式低温恒温器组件和压痕测试机械结构模块。利用精密位移驱动平台配合音圈电机的混合驱动方式,实现大行程准静态加载,利用接触制冷方式对样品和压头同时制冷,通过内嵌集成的加热元件和测温元件,实现连续变温闭环调节并削弱低温“温漂”对测试结果的影响,利用显微成像组件实现对压痕位置的精确定位与表面形貌原位观测。为开展材料在低温环境下的力学性能以及材料力学性能随温度的变化规律等研究提供试验基础,对航空航天、极地和深海科考装备以及超导传输设备等关键服役材料力学性能的研究具有显著的应用价值。
-
公开(公告)号:CN109540663B
公开(公告)日:2020-12-29
申请号:CN201811212456.9
申请日:2018-10-18
Applicant: 吉林大学
Abstract: 本发明涉及一种平压头垂直度对压痕测试材料力学参数的修正方法,属于材料力学性能测试领域。通过超精密垂直度测量仪测量压痕试验中平压头相对被测试件表面的垂直度。通过平压头对被测试件施加压入载荷进行微纳米压痕测试,获得材料压痕测试的载荷—深度曲线。通过获取载荷—深度曲线卸载部分曲线顶部的斜率,利用弹塑性理论和Olive‑Pharr方法,定量评估平压头垂直度对压痕接触面积的影响,得到平压头垂直度对被测材料力学性能参数的修正计算方法。本发明通过测量压痕试验中平压头的垂直度,并对压痕试验测试的材料力学性能参数进行修正校准,为压痕测试中定量评估压头垂直度的影响并修正压痕测试结果提供定量的评价方法。
-
公开(公告)号:CN110044752A
公开(公告)日:2019-07-23
申请号:CN201910348219.3
申请日:2019-04-28
Applicant: 吉林大学
IPC: G01N3/54
Abstract: 本发明涉及一种用于锥束CT成像的原位高/低温压痕测试装置,属于机电一体化精密科学仪器及材料测试领域。包括锥束CT成像单元、高/低温压痕测试单元、电动旋转平台、隔振台及硅油控温装置,锥束CT成像单元、电动旋转平台与硅油控温装置安装在隔振台上;高/低温压痕测试单元固定在电动旋转平台上;高/低温压痕测试单元包括高/低温加载子模块、精密加载与检测子模块、真空保障子模块。本发明可在锥束CT成像单元的动态监测下开展-50℃~120℃高/低温环境下的原位微纳米压痕测试,对材料在高应力应变作用下的微观变形和损伤过程进行原位观测与三维成像,为揭示力热耦合加载条件下材料的力学行为及其微观组织变化的本构关系提供了有效的技术手段。
-
-
-
-
-
-
-
-
-