-
公开(公告)号:CN113877573A
公开(公告)日:2022-01-04
申请号:CN202111225518.1
申请日:2021-10-21
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: B01J23/42 , B01J23/44 , B01J23/50 , B01J23/72 , B01J23/745 , B01J23/75 , B01J35/10 , C01B32/318 , C01B32/324 , C01B32/342 , C01B32/348 , C10G2/00 , B01J32/00
Abstract: 本发明提出了一种生物基介孔炭材料催化CO2加氢制备液体燃料的方法,属于生物质催化转化技术领域。本发明利用生物基介孔炭材料对生物质热解尾气中的CO2进行加氢反应从而制备液体燃料及化学品。同时,本发明以来源广泛、价格低廉并且可再生的生物质为原料,绿色环保,工艺简单。介孔炭材料作为CO2加氢催化剂时,可使反应在较温和的反应条件下进行,具有很强的实用性;同时制备所得液体燃料等相关化学品。
-
公开(公告)号:CN113575810A
公开(公告)日:2021-11-02
申请号:CN202110828879.9
申请日:2021-07-22
Applicant: 中国林业科学研究院林产化学工业研究所
Abstract: 本发明公开了一种微纳米化全竹笋饮品及其制备方法,所述方法为:将竹笋预处理后进行热提脱涩,之后经冷冻干燥后进行研磨破碎、超微粉碎与过滤分离成竹笋超微粉,之后与纯化水调配均匀后进行熟化处理,熟化后的物料进行一次均质,加入抗氧化剂、甜味剂与活性添加剂后进行二次均质,二次均质后灌装并经灭菌处理后制得微纳米化全竹笋饮品。本发明以新鲜竹笋为原料,经加工后制成的全竹笋饮品,纯天然,不含人工色素和防腐剂,脱去竹笋涩味、口感细腻、爽口柔滑,含有丰富的营养成分和膳食纤维,具有良好的保健功效,产品符合“营养化、功能化”定位,满足现代消费者需求,实现竹笋的高值化利用;同时,工艺简单,易于工业化生产。
-
公开(公告)号:CN110713183A
公开(公告)日:2020-01-21
申请号:CN201910752162.3
申请日:2019-08-15
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C01B32/342 , C01B32/324
Abstract: 一种利用速生材加工剩余物制得的成型颗粒活性炭及其制备方法。速生材加工剩余物破碎过筛,物料与磷酸溶液充分混合,在100~200℃下捏合不超过90min,随后置于油压成型设备中,压成直径为4mm的柱状颗粒,挤出后的柱状颗粒在140℃下硬化2h,在300~600℃下保温0.5~2h进行炭活化,反应结束后冷至室温,蒸馏水漂洗至pH值为5-6,干燥后即得活性炭。本发明速生材加工剩余物预处理制备成型颗粒活性炭无需外加粘结剂,方法简单,节约成本;可同时实现成型颗粒活性炭的高吸附性和高强度。
-
公开(公告)号:CN110694609A
公开(公告)日:2020-01-17
申请号:CN201911020219.7
申请日:2019-10-25
Applicant: 中国林业科学研究院林产化学工业研究所
Abstract: 本发明公开了一种催化热解自活化原位合成炭基La2O3催化剂的方法及其产品,属于炭基催化材料的制备及应用技术领域。该方法将木质纤维生物质和镧的盐溶液真空浸渍,得到镧掺杂改性的木质纤维生物质;然后将镧掺杂改性的木质纤维生物质经过管式炉催化热解自活化和焙烧,得到多级孔炭基La2O3催化剂。该催化剂催化大豆油酯交换制备脂肪酸甲酯的得率达95%以上,催化活性为单一La2O3催化剂的5倍以上。利用本发明原位合成炭基La2O3催化剂,无需外加活化剂,掺杂的La可调控炭载体的微孔-介孔结构,并在介孔道中原位形成纳米氧化物,过程简便、环保,制得炭基催化剂的催化活性高。
-
公开(公告)号:CN113307268B
公开(公告)日:2023-12-19
申请号:CN202110663078.1
申请日:2021-06-15
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C01B32/342 , C01B32/312
Abstract: 本发明公开了一种空气介导调控磷酸法活性炭孔道和表面性质的方法,属于活性炭材料生产技术领域。该方法利用空气对磷酸聚合、磷酸酯形成的抑制作用,无需改变酸屑比、活化温度和时间等主要工艺参数,仅通过调控磷酸法预处理和炭活化过程中空气的含量就实现活性炭孔道和表面性质的定向调控,解决了常规磷酸法活性炭孔道和表面性质调控时工艺参数改变导致的设备通用性差,耗时等难题。本发明方法操作简单、成本低、适用性强,无需对原有设备进行改动,对其它类型化学活化法制备活性炭亦有借鉴意义。
-
公开(公告)号:CN114605470B
公开(公告)日:2023-08-04
申请号:CN202210355953.4
申请日:2022-04-06
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C07F9/30
Abstract: 本发明公开了一种草铵膦原液精制脱色的方法,属于活性炭材料及农药精制技术领域。该方法为将草铵膦原液和表面改性介孔活性炭混合后,吸附、压滤得到脱色精制的淡黄色草铵膦溶液;其中,表面改性介孔活性炭的介孔率为40%~90%;草铵膦原液与表面改性介孔活性炭的液固比为5~30mL/g。采用表面改性介孔活性炭处理草铵膦水溶液,从而达到选择性吸附精制脱色的效果,改性介孔活性炭通过溶剂再生循环用于草铵膦原液的精制脱色。该方法能耗低、方法简便,选取的介孔活性炭和溶剂可再生循环利用,可提高草铵膦溶液的浓度,永久性脱色效果优异,透光率大于30%,且安全环保、成本低、工艺简便。
-
公开(公告)号:CN115739020A
公开(公告)日:2023-03-07
申请号:CN202211450781.5
申请日:2022-11-18
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: B01J20/20 , B01J20/30 , B01J20/34 , C01B32/354 , C01B32/366
Abstract: 一种脱色用废粉状活性炭成型与再生的产品及其制备。以脱色用废粉状活性炭为原料,将原料、无机黏结剂和有机黏结助剂复配,成型造粒制成颗粒。将颗粒缓慢烘干后,置于高温炉中焙烧,焙烧结束后,视产品性能好坏选择是否进行活化。所有步骤完成后,将产品取出筛分,即得成品活性炭。本发明所述无机黏结剂除具有黏结性强、耐高温外,还具有一定的吸附能力,在与废粉状活性炭复合后不会不堵孔;有机黏结助剂的加入增强了物料的塑性、润滑性和耐酸碱性,使成型更加顺畅,成型料表面光滑度提高,并可减少原料烘干过程可能发生的干裂。将两种黏结剂复配使用制备的颗粒活性炭强度达95%以上,四氯化碳吸附率大于40%,着火点大于350℃。
-
公开(公告)号:CN112582624A
公开(公告)日:2021-03-30
申请号:CN202011223114.4
申请日:2020-11-05
Applicant: 中国林业科学研究院林产化学工业研究所
Abstract: 本发明公开了一种钴‑碳纳米管/氮掺杂活性炭氧还原反应(ORR)催化剂的制备方法。本发明以构树枝为原料,经过低温水热反应、KHCO3活化反应及钴原位催化热解等步骤制备了钴‑碳纳米管/氮掺杂活性炭(Co‑CNT/N‑AC)ORR催化剂用于锌‑空气电池正极。具体步骤为:首先将构树枝去皮、干燥、粉碎后,放入聚四氟乙烯内衬的不锈钢反应釜中,加入水溶液,搅拌均匀,密封后放入烘箱中反应。自然冷却至室温后,过滤、热水洗涤、干燥;将干燥后样品与KHCO3研磨后在氮气气氛下高温焙烧、洗涤,然后通过钴原位催化热解等步骤制得Co‑CNT/N‑AC。本发明合成方法简单,过程环境友好,制备的Co‑CNT/N‑AC催化剂催化ORR性能良好。
-
公开(公告)号:CN112429732A
公开(公告)日:2021-03-02
申请号:CN202011391743.8
申请日:2020-12-02
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C01B32/318 , C01B32/342
Abstract: 本发明公开了一种木质素基成型活性炭及其制备方法,属于新型活性炭制备技术领域。该方法在磷酸活化法制备木质素基成型活性炭时,烘焙预处理木质素基原料,然后与磷酸溶液混合,经浸渍、造粒、活化、漂洗后制得木质素基成型活性炭;烘焙温度240‑280℃,烘焙时间1‑5h。该方法通过烘焙预处理木质素基原料,打开了磷酸渗透活化作用路径,使磷酸与原料充分接触作用,有效提高活性炭性能;烘焙后木质素大分子部分解聚炭化,释放一部分气体,改变木质素玻璃化转变温度和软化点,降低了木质素膨胀发泡反应,有利于成型和保持活性炭的耐磨强度。该活性炭碘吸附值大于800mg/g、亚甲基蓝吸附值大于180mg/g,耐磨强度大于85%。
-
公开(公告)号:CN111977653A
公开(公告)日:2020-11-24
申请号:CN202010867241.1
申请日:2020-08-24
Applicant: 中国林业科学研究院林产化学工业研究所
IPC: C01B32/354 , C01B32/205 , H01G11/24 , H01G11/34
Abstract: 本发明公开了一种超级电容器用改性活性炭及其制备方法,属于活性炭材料生产改性及应用技术领域。该方法先通过金属盐高温催化在活性炭外表构筑石墨化外壳,再通过氧化改性使活性炭孔道掺氧,得到电子电导率和离子电导率同步提高的改性活性炭材料。本发明解决了活性炭电极材料电子电导率和离子电导率互为消长的技术难题,首次实现了两者的同步提升。本发明制备方法操作简单,可应用于同时对电子和离子电导率有要求的活性炭材料改性中。本发明改性活性炭用于超级电容器时的倍率性能、比电容量均有大幅提高,组装成超级电容器后,具有优异的循环稳定性,应用前景广阔。
-
-
-
-
-
-
-
-
-