-
公开(公告)号:CN109799676A
公开(公告)日:2019-05-24
申请号:CN201910160336.7
申请日:2019-03-04
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种柔性光刻胶软模板及其制备方法,制备方法包括:1)提供牺牲衬底,在牺牲衬底上形成光刻胶材料层;2)对光刻胶材料层进行图形化曝光处理及显影处理,以在牺牲衬底上形成光刻胶图形层;3)采用腐蚀液去除牺牲衬底,以获得柔性光刻胶软模板;4)提供目标衬底,将柔性光刻胶软模板转移到目标衬底上。本发明可以制备出纳米尺度的柔性光刻胶软模板,可大大提高模板精度,本发明的柔性光刻胶软模板精度与光刻精度相同。本发明将制备好的柔性光刻胶软模板转移至目标衬底,不会造成目标衬底上光刻胶残留,保证了目标衬底的洁净度。
-
公开(公告)号:CN109509705A
公开(公告)日:2019-03-22
申请号:CN201811243153.3
申请日:2018-10-24
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/329 , H01L29/872 , H01L29/06
Abstract: 本发明提供一种低势垒高度肖特基二极管及其制备方法,包括如下步骤:1)提供一基底;2)于基底的表面形成石墨烯薄膜;3)对石墨烯薄膜进行氟化处理以形成氟化石墨烯绝缘层;4)于氟化石墨烯绝缘层表面沉积金属电极;5)去除肖特基结所在区域之外的氟化石墨烯绝缘层;6)于裸露的基底表面形成欧姆接触电极。本发明利用氟化石墨烯绝缘层作为金属电极与基底之间的插层,氟化石墨烯绝缘层不会在基底中产生MIGS钉扎效应;氟化石墨烯绝缘层可以阻挡金属电极与基底之间的互相扩散,可以形成均匀性极高的肖特基结面;可以大大降低金属电极对基底的费米能级钉扎效应,从而降低肖特基二极管中基底与金属电极之间形成的肖特基结势垒高度。
-
公开(公告)号:CN106904599B
公开(公告)日:2019-03-01
申请号:CN201510952653.4
申请日:2015-12-17
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B32/186 , H01L21/02
Abstract: 本发明提供一种在绝缘衬底上制备图形石墨烯的方法,包括:1)提供一绝缘衬底,于绝缘衬底上沉积锗薄膜;2)采用光刻刻蚀工艺于锗薄膜中刻蚀出所需图形,形成图形锗薄膜;以及步骤3)以所述图形锗薄膜为催化剂,在高温下生长石墨烯,同时,图形锗薄膜在高温下不断蒸发,并最终被全部去除,获得结合于绝缘衬底上的图形石墨烯。本发明通过在绝缘衬底上制备锗薄膜,并光刻刻蚀所述锗薄膜形成所需图形后,催化生长石墨烯,并在生长的同时将锗薄膜蒸发去除,获得绝缘体上图形石墨烯,克服了采用光刻刻蚀工艺对石墨烯进行刻蚀所带来的光刻胶等污染,提高了绝缘体上图形石墨烯材料的质量及性能。采用本发明的方法可以获得质量很高的图形石墨烯。
-
公开(公告)号:CN109055895A
公开(公告)日:2018-12-21
申请号:CN201810803257.9
申请日:2018-07-20
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种在绝缘衬底上直接制备石墨烯量子点阵列的方法,所述制备方法包括:提供一GOI结构,所述GOI结构包括绝缘衬底,和形成于所述绝缘衬底上的锗层;对所述GOI结构进行退火处理,以于所述绝缘衬底上形成锗量子点阵列;于所述锗量子点阵列上形成石墨烯量子点阵列,其中,所述石墨烯量子点阵列中各石墨烯量子点与所述锗量子点阵列中各锗量子点一一对应,且所述石墨烯量子点包裹所述锗量子点;以及对上一步骤所得结构中的所述锗量子点阵列进行氧化挥发处理,以去除所述锗量子点阵列,实现在所述绝缘衬底上直接制备所述石墨烯量子点阵列。通过本发明解决了现有无法制备出排列有序的石墨烯量子点阵列的问题。
-
公开(公告)号:CN105448690B
公开(公告)日:2018-10-26
申请号:CN201410415714.9
申请日:2014-08-22
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/28
Abstract: 本发明提供一种利用石墨烯插入层外延生长金属/半导体材料的方法,所述方法至少包括以下步骤:1)提供一半导体衬底,在所述半导体衬底表面形成石墨烯薄膜;2)在所述石墨烯薄膜表面沉积一层金属层;3)进行快速退火,使所述半导体衬底表层的一部分原子穿过所述石墨烯薄膜与所述金属层发生反应,形成金属/半导体材料层。本发明通过采用坚硬的石墨烯薄膜作为插入层,快速退火阶段半导体材料的原子在插入层中的扩散速度较为缓慢,使材料整体的反应更加平衡,从而获得均匀平整且稳定的金属/半导体材料,改善界面的接触特性。
-
公开(公告)号:CN105140171B
公开(公告)日:2018-06-29
申请号:CN201510532134.2
申请日:2015-08-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762
Abstract: 本发明提供一种制备绝缘体上材料的方法,包括以下步骤:S1:提供一衬底;S2:在所述衬底表面依次外延第一材料层、硼掺杂第一材料层及第二材料层;S3:重复步骤S2至少一次;S4:进行离子注入,使离子注入到最远离所述衬底的所述第一材料层中;S5:提供一表面形成有绝缘层的基板,将所述绝缘层与位于顶层的第二材料层键合,形成键合片;S6:对键合片进行退火处理,使位于离子注入层上的所述硼掺杂第一材料层吸附离子形成微裂纹而剥离,得到绝缘体上材料。本发明中,所述衬底可以重复利用,从而降低了生产材料成本,并简化了工艺流程;且离子注入剂量更低,有利于提高晶体质量,减少注入成本;本发明得到的绝缘体上材料表面非常光滑,无需抛光。
-
公开(公告)号:CN103972148B
公开(公告)日:2017-01-25
申请号:CN201410222756.0
申请日:2014-05-23
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762
CPC classification number: Y02P80/30
Abstract: 本发明提供一种超薄膜绝缘体上材料的制备方法,包括步骤:1)在所述第一衬底表面外延第一掺杂单晶层、缓冲层、第二掺杂单晶层以及待转移层;2)低剂量离子注入至所述第一掺杂单晶层与第一衬底的界面以下预设深度;3)键合所述第二衬底的绝缘层与待转移层;4)退火剥离所述缓冲层与第一衬底;5)低剂量离子注入至所述第二掺杂单晶层与缓冲层的界面以上预设深度;6)键合所述第三衬底的绝缘层与缓冲层;7)退火剥离所述缓冲层与待转移层,获得两种绝缘体上材料。本发明采用两次注入剥离技术在制备超薄绝缘体上待转移层材料的同时,通过第二次剥离,还制备了另外一种绝缘体上材料,即,缓冲材料,这使得整个制备过程中几乎没有材料损耗。
-
公开(公告)号:CN105983132A
公开(公告)日:2016-10-05
申请号:CN201510064331.6
申请日:2015-02-06
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种医用钛材料表面改性的方法以及具有表面改性的医用钛材料,所述方法为于医用钛材料的表面制备石墨烯薄膜。本发明在医用钛材料的表面制备一层石墨烯薄膜,相比于未改性医用钛材料,表面生长石墨烯薄膜能够明显提高医用钛材料表面的细胞相容性、生物活性和诱导骨髓间充质干细胞向成骨方向分化的能力(即成骨活性)。本发明方法步骤简单,容易实现产业化。
-
公开(公告)号:CN104157741B
公开(公告)日:2016-07-06
申请号:CN201410459322.2
申请日:2014-09-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L31/18
CPC classification number: Y02P70/521
Abstract: 本发明提供一种光电探测器的制备方法,包括步骤:1)提供一硅衬底,于所述硅衬底表面形成Ge底层;2)在所述Ge底层上生长SiGe/Ge周期结构,最上一层用Ge覆盖;3)于所述SiGe/Ge周期结构及Ge底层中刻蚀出直至所述硅衬底的至少两个间隔排列的凹槽;4)采用选择性腐蚀工艺去除凹槽之间的SiGe/Ge周期结构中的SiGe,形成具有间隔的多层Ge结构;5)采用溶液法在所述多层Ge结构的表面附着金属颗粒;6)于所述SiGe/Ge周期结构表面制作电极。本发明利用金属粒子产生局域表面等离子体共振,制备出了高效率的硅基光电探测器,并且,通过多个表面的引入,进一步提高光电探测的效率。本发明步骤简单,适用于工业生产。
-
公开(公告)号:CN103646910B
公开(公告)日:2016-06-15
申请号:CN201310724465.7
申请日:2013-12-24
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762 , H01L21/324 , H01L21/265
Abstract: 本发明提供一种SGOI结构的制备方法,至少包括以下步骤:S1:提供一SOI衬底,在所述顶层硅表面外延生长一单晶SiGe层;S2:在所述单晶SiGe层表面形成一Si帽层;S3:从所述Si帽层正面进行离子注入,注入深度到达所述顶层硅中;S4:将步骤S3获得的结构进行锗浓缩,形成自下而上依次包含有背衬底、埋氧层、预设Ge浓度SiGe层及SiO2层的叠层结构;S5:腐蚀掉所述叠层结构表面的SiO2层以得到SGOI结构。本发明结合离子注入技术和锗浓缩工艺制备高质量高Ge浓度的SGOI结构,离子注入减弱了顶层硅与所述SiGe层之间的晶格失配,且伴随退火过程的进行,位错环在纵向方向上相互作用并相互抵消,使应力得到释放,从而使最终获得的SGOI结构中穿透位错密度大大降低。
-
-
-
-
-
-
-
-
-