-
公开(公告)号:CN114510721A
公开(公告)日:2022-05-17
申请号:CN202210151968.9
申请日:2022-02-18
Applicant: 哈尔滨工程大学
IPC: G06F21/56 , G06K9/62 , G06V10/764 , G06N20/00
Abstract: 一种基于特征融合的静态恶意代码分类方法,它属于静态恶意代码特征提取和融合领域。本发明解决了传统静态恶意代码检测和分类方法仅考虑了单一维度特征的问题。本发明将hash值转换成像素矩阵生成灰度图像,再提取图像纹理全局特征和局部特征,并将全局特征和局部特征融合,在获取恶意代码图像全局特征信息的前提条件下突出局部特点。基于控制流程图的n‑gram方法对操作码进行特征提取,这种方法的检测颗粒度较小,与控制流程图相结合会得到代码上下文之间的关联,从而将操作码转换成特征向量形式。将两种特征向量融合成一个向量,弥补了在单一层面提取特征的局限性。本发明方法可以应用于对静态恶意代码进行分类。
-
公开(公告)号:CN105405118B
公开(公告)日:2017-11-21
申请号:CN201510676957.2
申请日:2015-10-16
Applicant: 哈尔滨工程大学
Abstract: 本发明提供的是一种基于量子衍生混合蛙跳的水下声纳图像目标检测方法。包括(1)适应度函数;(2)量子进化更新;(3)模糊隶属度矩阵结合空间信息去除孤立区;(4)对检测结果进行基于信息论的客观定量评价分析。本发明利用量子比特对青蛙种群进行编码,并结合类内和类间信息的适应度函数来更为准确地评价青蛙位置的好坏;采用量子进化更新方式,利用相位角编码,更新子种群中最坏位置的青蛙;根据模糊隶属度矩阵结合空间信息去除孤立区的方法获得更精确的检测结果;提出分割布局噪声熵对最终检测结果进行定量分析。本发明能更为准确地完成水下声纳图像目标检测,有一定的检测精度和有效性,具有较高的适应性。
-
公开(公告)号:CN105405118A
公开(公告)日:2016-03-16
申请号:CN201510676957.2
申请日:2015-10-16
Applicant: 哈尔滨工程大学
IPC: G06T7/00
CPC classification number: G06T7/0012
Abstract: 本发明提供的是一种基于量子衍生混合蛙跳的水下声纳图像目标检测方法。包括(1)适应度函数;(2)量子进化更新;(3)模糊隶属度矩阵结合空间信息去除孤立区;(4)对检测结果进行基于信息论的客观定量评价分析。本发明利用量子比特对青蛙种群进行编码,并结合类内和类间信息的适应度函数来更为准确地评价青蛙位置的好坏;采用量子进化更新方式,利用相位角编码,更新子种群中最坏位置的青蛙;根据模糊隶属度矩阵结合空间信息去除孤立区的方法获得更精确的检测结果;提出分割布局噪声熵对最终检测结果进行定量分析。本发明能更为准确地完成水下声纳图像目标检测,有一定的检测精度和有效性,具有较高的适应性。
-
公开(公告)号:CN114510721B
公开(公告)日:2024-07-05
申请号:CN202210151968.9
申请日:2022-02-18
Applicant: 哈尔滨工程大学
Abstract: 一种基于特征融合的静态恶意代码分类方法,它属于静态恶意代码特征提取和融合领域。本发明解决了传统静态恶意代码检测和分类方法仅考虑了单一维度特征的问题。本发明将hash值转换成像素矩阵生成灰度图像,再提取图像纹理全局特征和局部特征,并将全局特征和局部特征融合,在获取恶意代码图像全局特征信息的前提条件下突出局部特点。基于控制流程图的n‑gram方法对操作码进行特征提取,这种方法的检测颗粒度较小,与控制流程图相结合会得到代码上下文之间的关联,从而将操作码转换成特征向量形式。将两种特征向量融合成一个向量,弥补了在单一层面提取特征的局限性。本发明方法可以应用于对静态恶意代码进行分类。
-
公开(公告)号:CN113642245B
公开(公告)日:2024-03-19
申请号:CN202110975058.8
申请日:2021-08-24
Applicant: 哈尔滨工程大学
IPC: G06F30/27 , G06F17/14 , G06F16/36 , G06F16/21 , G06N3/0475 , G06N3/094 , G06F119/10
Abstract: 一种舰船辐射噪声数据集的构建方法,它属于水声信号识别领域。本发明解决了实采舰船辐射噪音样本稀缺的问题。本发明根据现有的舰船辐射噪声数据实采样本,利用仿真技术生成符合实际需要的舰船辐射噪声,将仿真舰船辐射噪声和实采的海洋噪声一起作为原始噪声数据集,将LOFAR谱用于预处理,保留关键特征,最后用GAN实现样本扩展,从而获得更多的数据集来满足深度学习大数据量的需求。本发明可以应用于对舰船辐射噪声数据集的构建。
-
公开(公告)号:CN113673627B
公开(公告)日:2024-02-13
申请号:CN202111026189.8
申请日:2021-09-02
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0985 , G06Q30/0601
Abstract: 一种具有解释性的商品自动分类方法及系统,它属于图像识别分类技术领域。本发明解决了现有的商品图像识别分类算法难以获得解释性,导致现有方法难以对复杂商品进行准确分类的问题。本发明使用Pytorch工具对图像进行双标签格式标注来构建相应数据集,利用构建的数据集对设计的网络架构进行训练,再采用训练好的网络架构对图像进行分类,同时在网页中展示其可视化结果,实现一个分类准确率高且解释力强的商品识别分类模型,解决传统方法对复杂商品识别分类困难的问题。本发明可以应用于对图像进行识别分类。
-
公开(公告)号:CN117437979A
公开(公告)日:2024-01-23
申请号:CN202311332189.X
申请日:2023-10-13
Applicant: 哈尔滨工程大学
IPC: G16B30/00 , G16B40/30 , G06F17/16 , G06N3/0455 , G06F18/23213
Abstract: 一种基于图自编码器的单细胞RNA测序数据聚类方法及系统,它属于深度学习和生物信息领域。本发明解决了现有聚类方法没有深入考虑细胞与细胞之间的关系,导致对单细胞RNA测序数据的聚类精度低的问题。本发明采用特征自编码器进行数据特征的提取并采用KNN算法构成图,作为后续图自编码器的输入,从图的角度出发考虑细胞间的关系,而不是传统的仅仅考虑一个个孤立的点;引入了基于GAT的图自编码器进行图重构效果的优化,自适应地计算每个图节点的邻居节点的权重,从而抽象出细胞之间的高阶关系。本发明可以应用于单细胞RNA测序数据聚类。
-
公开(公告)号:CN113673627A
公开(公告)日:2021-11-19
申请号:CN202111026189.8
申请日:2021-09-02
Applicant: 哈尔滨工程大学
Abstract: 一种具有解释性的商品自动分类方法及系统,它属于图像识别分类技术领域。本发明解决了现有的商品图像识别分类算法难以获得解释性,导致现有方法难以对复杂商品进行准确分类的问题。本发明使用Pytorch工具对图像进行双标签格式标注来构建相应数据集,利用构建的数据集对设计的网络架构进行训练,再采用训练好的网络架构对图像进行分类,同时在网页中展示其可视化结果,实现一个分类准确率高且解释力强的商品识别分类模型,解决传统方法对复杂商品识别分类困难的问题。本发明可以应用于对图像进行识别分类。
-
公开(公告)号:CN113532422A
公开(公告)日:2021-10-22
申请号:CN202110784798.3
申请日:2021-07-12
Applicant: 哈尔滨工程大学
Abstract: 一种基于距离图和数据清洗的多传感器航迹融合方法,它属于多传感器信息融合技术领域。本发明是为解决现有多传感器航迹融合方法存在着计算量与融合精度不平衡的问题。本发明将采样点的距离作为判定两条航迹在该时刻是否关联的依据,在此基础上构造距离图,通过对距离图的剪枝完成航迹关联,从而更好的放映航迹之间的关联关系,以较小的时间代价获得了较高的关联精度。运用格拉布斯准则对关联航迹进行数据清洗,剔除传感器航迹中的离群点,用较少的融合时间达到了较高的融合精度,为多传感器航迹融合问题提供了技术支持。本发明可以应用于对多传感器航迹进行融合。
-
公开(公告)号:CN118824393A
公开(公告)日:2024-10-22
申请号:CN202410722207.3
申请日:2024-06-05
Applicant: 哈尔滨工程大学
IPC: G16C20/30 , G16C20/70 , G06N3/0442 , G06N3/09
Abstract: 一种基于长短时记忆网络和注意力机制的分子活性预测方法,它属于深度学习和生物信息领域。本发明的目的是为解决由于分子相互作用的动态性和高度复杂性,导致现有方法对2型大麻素受体的配体活性预测的准确率低的问题。本发明利用分子指纹来全面捕捉分子的化学特性,分子指纹经过组合,可以为后续模型提供丰富的分子信息。并利用LSTM单元来处理分子序列数据,将分子的结构信息编码成中间表示。将点积注意力机制应用于LSTM层的输出,可以增强模型对不同特征的关注程度,使得预测网络可以自动关注对分类任务最有帮助的特征,因此,本发明方法可以更好的适应分子相互作用的动态性和高度复杂性。本发明方法可以应用于分子活性预测领域。
-
-
-
-
-
-
-
-
-