-
公开(公告)号:CN113673627B
公开(公告)日:2024-02-13
申请号:CN202111026189.8
申请日:2021-09-02
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0985 , G06Q30/0601
Abstract: 一种具有解释性的商品自动分类方法及系统,它属于图像识别分类技术领域。本发明解决了现有的商品图像识别分类算法难以获得解释性,导致现有方法难以对复杂商品进行准确分类的问题。本发明使用Pytorch工具对图像进行双标签格式标注来构建相应数据集,利用构建的数据集对设计的网络架构进行训练,再采用训练好的网络架构对图像进行分类,同时在网页中展示其可视化结果,实现一个分类准确率高且解释力强的商品识别分类模型,解决传统方法对复杂商品识别分类困难的问题。本发明可以应用于对图像进行识别分类。
-
公开(公告)号:CN113673627A
公开(公告)日:2021-11-19
申请号:CN202111026189.8
申请日:2021-09-02
Applicant: 哈尔滨工程大学
Abstract: 一种具有解释性的商品自动分类方法及系统,它属于图像识别分类技术领域。本发明解决了现有的商品图像识别分类算法难以获得解释性,导致现有方法难以对复杂商品进行准确分类的问题。本发明使用Pytorch工具对图像进行双标签格式标注来构建相应数据集,利用构建的数据集对设计的网络架构进行训练,再采用训练好的网络架构对图像进行分类,同时在网页中展示其可视化结果,实现一个分类准确率高且解释力强的商品识别分类模型,解决传统方法对复杂商品识别分类困难的问题。本发明可以应用于对图像进行识别分类。
-