一种基于改进Sarsa算法的路径规划方法

    公开(公告)号:CN113467481B

    公开(公告)日:2022-10-25

    申请号:CN202110918358.2

    申请日:2021-08-11

    Abstract: 一种基于改进Sarsa算法的路径规划方法,属于强化学习和路径规划领域。本发明为了解决基于传统Sarsa算法的路径规划过程存在规划收敛速度较慢、规划效率较低的问题。本发明针对于待进行路径规划的区域建立地图模型,引入路径矩阵P(s,a),在智能体探索的过程中,动态调整贪婪因子ε,采用ε‑greedy策略进行动作选择,智能体采取动作a后,环境会反馈一个奖励R并进入到下一个状态s′;并基于路径矩阵更新Q值表,从而基于改进的Sarsa算法实现路径规划。主要用于机器人的路径规划。

    一种基于改进Sarsa算法的路径规划方法

    公开(公告)号:CN113467481A

    公开(公告)日:2021-10-01

    申请号:CN202110918358.2

    申请日:2021-08-11

    Abstract: 一种基于改进Sarsa算法的路径规划方法,属于强化学习和路径规划领域。本发明为了解决基于传统Sarsa算法的路径规划过程存在规划收敛速度较慢、规划效率较低的问题。本发明针对于待进行路径规划的区域建立地图模型,引入路径矩阵P(s,a),在智能体探索的过程中,动态调整贪婪因子ε,采用ε‑greedy策略进行动作选择,智能体采取动作a后,环境会反馈一个奖励R并进入到下一个状态s′;并基于路径矩阵更新Q值表,从而基于改进的Sarsa算法实现路径规划。主要用于机器人的路径规划。

    基于复合神经网络的水声目标识别方法

    公开(公告)号:CN113537113B

    公开(公告)日:2022-10-25

    申请号:CN202110844909.5

    申请日:2021-07-26

    Abstract: 基于复合神经网络的水声目标识别方法,它属于水声信号识别技术领域。本发明是为了解决采用现有方法对水声目标识别的准确率低的问题。本发明设计了基于复合神经网络的基层网络结构,先通过LSTM算法对输入音频样本数据的时序特征进行学习,得到一个通过算法更新后的状态信息作为中间向量,进而将这一层次中的状态信息继续通过CNN网络进行传递,经过CNN网络中的卷积池化运算得到输入音频样本数据的空间特征,最后通过CNN网络最后一层的softmax函数得到水声目标识别结果。本发明可以应用于水声信号识别。

    一种基于距离图和数据清洗的多传感器航迹融合方法

    公开(公告)号:CN113532422B

    公开(公告)日:2022-06-21

    申请号:CN202110784798.3

    申请日:2021-07-12

    Abstract: 一种基于距离图和数据清洗的多传感器航迹融合方法,它属于多传感器信息融合技术领域。本发明是为解决现有多传感器航迹融合方法存在着计算量与融合精度不平衡的问题。本发明将采样点的距离作为判定两条航迹在该时刻是否关联的依据,在此基础上构造距离图,通过对距离图的剪枝完成航迹关联,从而更好的放映航迹之间的关联关系,以较小的时间代价获得了较高的关联精度。运用格拉布斯准则对关联航迹进行数据清洗,剔除传感器航迹中的离群点,用较少的融合时间达到了较高的融合精度,为多传感器航迹融合问题提供了技术支持。本发明可以应用于对多传感器航迹进行融合。

    基于复合神经网络的水声目标识别方法

    公开(公告)号:CN113537113A

    公开(公告)日:2021-10-22

    申请号:CN202110844909.5

    申请日:2021-07-26

    Abstract: 基于复合神经网络的水声目标识别方法,它属于水声信号识别技术领域。本发明是为了解决采用现有方法对水声目标识别的准确率低的问题。本发明设计了基于复合神经网络的基层网络结构,先通过LSTM算法对输入音频样本数据的时序特征进行学习,得到一个通过算法更新后的状态信息作为中间向量,进而将这一层次中的状态信息继续通过CNN网络进行传递,经过CNN网络中的卷积池化运算得到输入音频样本数据的空间特征,最后通过CNN网络最后一层的softmax函数得到水声目标识别结果。本发明可以应用于水声信号识别。

    一种具有解释性的商品自动分类方法及系统

    公开(公告)号:CN113673627B

    公开(公告)日:2024-02-13

    申请号:CN202111026189.8

    申请日:2021-09-02

    Abstract: 一种具有解释性的商品自动分类方法及系统,它属于图像识别分类技术领域。本发明解决了现有的商品图像识别分类算法难以获得解释性,导致现有方法难以对复杂商品进行准确分类的问题。本发明使用Pytorch工具对图像进行双标签格式标注来构建相应数据集,利用构建的数据集对设计的网络架构进行训练,再采用训练好的网络架构对图像进行分类,同时在网页中展示其可视化结果,实现一个分类准确率高且解释力强的商品识别分类模型,解决传统方法对复杂商品识别分类困难的问题。本发明可以应用于对图像进行识别分类。

    一种具有解释性的商品自动分类方法及系统

    公开(公告)号:CN113673627A

    公开(公告)日:2021-11-19

    申请号:CN202111026189.8

    申请日:2021-09-02

    Abstract: 一种具有解释性的商品自动分类方法及系统,它属于图像识别分类技术领域。本发明解决了现有的商品图像识别分类算法难以获得解释性,导致现有方法难以对复杂商品进行准确分类的问题。本发明使用Pytorch工具对图像进行双标签格式标注来构建相应数据集,利用构建的数据集对设计的网络架构进行训练,再采用训练好的网络架构对图像进行分类,同时在网页中展示其可视化结果,实现一个分类准确率高且解释力强的商品识别分类模型,解决传统方法对复杂商品识别分类困难的问题。本发明可以应用于对图像进行识别分类。

    一种基于距离图和数据清洗的多传感器航迹融合方法

    公开(公告)号:CN113532422A

    公开(公告)日:2021-10-22

    申请号:CN202110784798.3

    申请日:2021-07-12

    Abstract: 一种基于距离图和数据清洗的多传感器航迹融合方法,它属于多传感器信息融合技术领域。本发明是为解决现有多传感器航迹融合方法存在着计算量与融合精度不平衡的问题。本发明将采样点的距离作为判定两条航迹在该时刻是否关联的依据,在此基础上构造距离图,通过对距离图的剪枝完成航迹关联,从而更好的放映航迹之间的关联关系,以较小的时间代价获得了较高的关联精度。运用格拉布斯准则对关联航迹进行数据清洗,剔除传感器航迹中的离群点,用较少的融合时间达到了较高的融合精度,为多传感器航迹融合问题提供了技术支持。本发明可以应用于对多传感器航迹进行融合。

Patent Agency Ranking