-
公开(公告)号:CN113932815B
公开(公告)日:2023-07-18
申请号:CN202111217468.2
申请日:2021-10-19
Applicant: 北京京航计算通讯研究所
IPC: G01C21/20
Abstract: 本发明涉及一种稳健性优化Kalman滤波相对导航方法、装置、设备和存储介质;方法包括:确定Kalman滤波的状态序列和观测序列;建立与状态序列和观测序列对应的Kalman滤波模型;采用建立的Kalman滤波模型进行滤波;在Kalman滤波过程中,采用Kalman增益矩阵用于提高Kalman滤波的稳健性;其中,为第k个时间点的Kalman滤波估计的后验预测误差协方差矩阵;I为单位矩阵;Hk为观测转移矩阵;Vk为观测噪声矩阵;λ1为第一稳健性参数,λ2为第二稳健性参数。本发明与传统的卡尔曼滤波算法相比,提升对量测数据误差的鲁棒性,减少了计算结果与真实值的偏差。
-
公开(公告)号:CN114677368A
公开(公告)日:2022-06-28
申请号:CN202210411363.9
申请日:2022-04-19
Applicant: 中国人民解放军32021部队 , 北京京航计算通讯研究所
Inventor: 喻夏琼 , 王佳佳 , 赵金贤 , 吴平安 , 董小环 , 侯健 , 马静 , 务宇宽 , 王亚锋 , 唐斌 , 李娜 , 单月晖 , 赵志远 , 杨鹏 , 师康钦 , 高琳 , 刘登
Abstract: 本发明提供一种图像显著性检测方法及装置,其中方法包括:步骤:S1:对待检测图像做超像素分割处理,得到超像素分割图像;S2:从超像素分割图像中提取出包含边界特征的背景超像素图像;S3:利用LASSO算法与背景超像素图像,对超像素分割图像做显著性检测处理,得到显著性检测处理的学习层处理结果;S4:判断学习层处理结果是否满足预设条件,若是,执行步骤S5;否则,执行步骤S6;S5:将学习层处理结果作为显著性检测处理结果;根据显著性检测处理结果,生成显著图;S6:将学习层处理结果,反向传播至超像素分割图像,得到更新的待检测图像,返回执行步骤S1。本发明提供的技术方案可有效处理对于背景较复杂的遥感图像,实现图像的显著性检测。
-
公开(公告)号:CN113917938A
公开(公告)日:2022-01-11
申请号:CN202111173142.4
申请日:2021-10-08
Applicant: 北京京航计算通讯研究所
Abstract: 本发明涉及一种小样本条件下的飞行器姿态控制数据增强和模型训练方法,包括:将飞行器姿态控制的训练集分解成多份子训练集;随机选取一份子训练集,训练第一生成器、第二生成器和第三生成器的神经网络参数;第一生成器、第二生成器和第三生成器分别依据各自的数据增强方式在神经网络模型中进行数据增强;计算出第一生成器、第二生成器和第三生成器在神经网络模型中的重要性权值;根据第一生成器、第二生成器和第三生成器的重要性权值,设置神经网络模型的目标函数;进行神经网络模型参数的训练;判断训练的迭代次数超过给定阈值;是,则终止训练;否,则重新选择子训练集进行训练。本发明提升了种小样本条件下神经网络模型的分类任务性能。
-
公开(公告)号:CN113917938B
公开(公告)日:2024-04-19
申请号:CN202111173142.4
申请日:2021-10-08
Applicant: 北京京航计算通讯研究所
IPC: G05D1/49 , G06F18/241 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种小样本条件下的飞行器姿态控制数据增强和模型训练方法,包括:将飞行器姿态控制的训练集分解成多份子训练集;随机选取一份子训练集,训练第一生成器、第二生成器和第三生成器的神经网络参数;第一生成器、第二生成器和第三生成器分别依据各自的数据增强方式在神经网络模型中进行数据增强;计算出第一生成器、第二生成器和第三生成器在神经网络模型中的重要性权值;根据第一生成器、第二生成器和第三生成器的重要性权值,设置神经网络模型的目标函数;进行神经网络模型参数的训练;判断训练的迭代次数超过给定阈值;是,则终止训练;否,则重新选择子训练集进行训练。本发明提升了种小样本条件下神经网络模型的分类任务性能。
-
公开(公告)号:CN117332923A
公开(公告)日:2024-01-02
申请号:CN202311298194.3
申请日:2023-10-09
Applicant: 北京京航计算通讯研究所
IPC: G06Q10/063 , G06Q50/26 , G06F18/27 , G06F18/2135 , G06F30/27
Abstract: 本发明涉及一种网状指标体系的赋权方法及系统,属于数据处理技术领域,解决了现有技术中无法对非线性耦合指标客观赋权的问题。包括:构建网状指标体系;通过作战仿真采集样本数据,根据每条样本数据计算出网状指标体系中末级的各项指标值,构建初始指标矩阵;利用主成分分析法获取初始指标矩阵降维后的字典指标矩阵;利用Lasso算法得到回归系数矩阵,归一化后作为指标权重矩阵;计算指标权重矩阵中每个指标的平均权重,当平均权重的标准差小于1,则根据平均权重更新初始指标矩阵,再次利用主成分分析法和Lasso算法得到新的平均权重,当平均权重的标准差大于1,停止迭代,最后的平均权重即为指标权重。实现了网状指标体系的客观赋权。
-
-
-
-