-
公开(公告)号:CN108132112B
公开(公告)日:2019-12-20
申请号:CN201711115268.X
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 李宇 , 陈伟华 , 黄建栋 , 刘国仟 , 聂亮 , 刘宇飞 , 檀妹静 , 景丽 , 高扬 , 聂春生 , 颜维旭 , 陈轩 , 周禹 , 曹占伟 , 王振峰 , 季妮芝 , 高翔宇 , 于明星 , 闵昌万 , 陈敏
Abstract: 本发明提供了一种高超声速飞行器表面热流辨识装置及设计方法,属于高超声速飞行器热参数测量技术领域。该装置包括:热传导敏感元件、敏感元件隔热套、敏感元件压板、温度传感器,热传导敏感元件为柱状结构,敏感元件隔热套为带通孔的柱状结构,热传导敏感元件位于敏感元件隔热套通孔中,与敏感元件隔热套间隙配合,敏感元件一侧与隔热套外表面平齐,形成测量端面,另一侧底部安装有温度传感器,敏感元件压板压住热传导敏感元件,与敏感元件隔热套间隙配合安装,敏感元件隔热套、敏感元件与敏感元件隔热套之间的间隙以及敏感元件压板共同阻隔热传导敏感元件除测量端面以外的部分与外部环境之间热量交换。本发明克服了传统热流传感器对于长时间高热流测量的适应性差以及传感器尺寸大、重量大、安装受限大、难以实现密集测量问题。
-
公开(公告)号:CN106706166B
公开(公告)日:2019-04-30
申请号:CN201611024191.0
申请日:2016-11-14
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01K17/06
Abstract: 适用于高焓中低热流环境的陶瓷壁面复合塞式热流传感器,涉及陶瓷壁面热流传感器设计领域;热流传感器包括石墨烯柱、刚性陶瓷隔热套、紫铜柱、热电偶、陶瓷涂层;其中,石墨烯柱的轴向一端与紫铜柱固定连接,石墨烯柱的轴向另一端覆盖有陶瓷涂层;在石墨烯柱的外侧壁和紫铜柱远离石墨烯柱的轴向端面包覆有刚性陶瓷隔热套;在紫铜柱的端面设置有热电偶;本发明解决了无法直接在紫铜柱表面制备陶瓷涂层的问题,缓解平面方向的热扩散,有效规避了陶瓷材料导热系数小,热响应慢的问题,为高超声速飞行器地面防热试验提供了更加精确的测热传感器。
-
公开(公告)号:CN107958102A
公开(公告)日:2018-04-24
申请号:CN201711086208.X
申请日:2017-11-07
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
CPC classification number: G06F17/5009 , G06F17/5095 , G06F2217/80
Abstract: 本发明提供了一种用于高超声速气动热预测的偏差大气参数确定方法,属于高超声速飞行器气动热环境预示技术领域。该方法包括如下步骤:(1)、根据飞行弹道点的飞行高度H,由标准大气方程组,得出该弹道点对应的标准大气密度ρ;(2)、根据飞行弹道点的飞行高度H,由大气密度偏差Δρ与高度的关系,得出对应的大气密度偏差量Δρ,由标准大气密度ρ和大气密度偏差量Δρ,得出该飞行高度H对应的偏差大气密度ρ';(3)、根据偏差大气密度ρ',由标准大气方程组,反查出与偏差大气密度ρ'对应的偏差大气高度H';(4)、根据偏差大气高度H',由标准大气方程组,分别计算得到偏差大气压力P'和偏差大气温度T'。本发明相对其它方法来确定偏差大气参数,具有方便快速的特点。
-
公开(公告)号:CN107977491B
公开(公告)日:2021-09-03
申请号:CN201711117139.4
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F30/23 , G06F30/15 , G06F119/08 , G06F119/02
Abstract: 一种非稳态情况下飞行器空气舵缝隙的气动热评估方法,包括步骤如下:一、通过数值求解飞行器流场的N-S方程,获得飞行器外壁表面热流;二、对舵缝隙内是否存在非定常效应进行判断并相应处理;三、获得若干周期内舵缝隙区域特征点处定常方法的平均热流;四、获得若干周期内特征点处非定常方法的平均热流并和定常方法结果比较,根据情况相应处理;五、获得舵缝隙区域干扰因子,利用曲线拟合方法获得干扰因子随舵偏变化的分段解析函数曲线;六、将干扰因子的分段函数曲线嵌入到气动热工程计算程序,获得飞行器在设定弹道时间段的舵缝隙区域热环境结果。本发明在保证空气舵缝隙气动热评估结果可靠性的同时能够有效减小评估结果的冗余度。
-
公开(公告)号:CN110823494A
公开(公告)日:2020-02-21
申请号:CN201911198435.0
申请日:2019-11-29
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及电弧风洞试验技术领域,尤其涉及一种防隔热材料热响应电弧风洞试验装置及方法。该防隔热材料热响应电弧风洞试验装置包括风洞、转动连接件、水冷工装和旋转驱动机构,旋转驱动机构的动力输出轴与转动连接件相连,水冷工装安装在转动连接件上,水冷工装与风洞的出口相对应。本发明提供的防隔热材料热响应电弧风洞试验装置及方法,能够改变平板试验模型的测量表面与风洞的出口内侧壁下表面之间的夹角,实现连续改变加载到平板试验模型的测量表面热流的目的,进而实现在长时间条件下对防隔热材料热响应的精细化、连续化操作,极大地提高了电弧风洞试验中防隔热材料热响应的真实性,为长时间飞行条件下飞行器防隔热设计提供有效支撑。
-
公开(公告)号:CN110806300A
公开(公告)日:2020-02-18
申请号:CN201910969230.1
申请日:2019-10-12
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01M9/06
Abstract: 一种适用于高超声速飞行试验转捩研究的测点布置方法,通过下述方式实现:S1、根据测量需求,确定是测量自然转捩还是强制转捩,若为测量自然转捩,则转S2;若为强制转捩,则转S3;S2、根据测量需求测量主流转捩情况和或横流效应的转捩情况,其中测量主流转捩情况时,测点布置高超声速飞行器主流方向的流线上;测量横流效应的转捩情况时,将测点布置于侧向具有横流速度的位置上;所述的主流方向为飞行器中心流线方向及与其夹角不超过3°的流线方向;S3、在所述飞行器上预先确定的位置设置粗糙元,并将测点布置在粗糙元所在流线的下游;上述测点位置通过安装传感器实现飞行试验过程中飞行器表面物理量的测量。
-
公开(公告)号:CN202944563U
公开(公告)日:2013-05-22
申请号:CN201220540192.1
申请日:2012-10-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本实用新型属于飞行器翼身连接结构,具体公开一种高超声速飞行器硅基防热层翼身连接层式嵌入结构,它包括翼防热层、翼金属结构、金属骨架、锥身防热层,翼金属结构外设有翼防热层,锥身金属骨架外设有锥身防热层,翼防热层嵌在锥身防热层内。本实用新型属的连接结构能够防止翼金属结构的翼前尖翘曲形成尖锐驻点,能够防止翼身连接处由于不受防热层保护直接被热气流侵袭的严重问题。
-
公开(公告)号:CN117469029A
公开(公告)日:2024-01-30
申请号:CN202310726713.5
申请日:2023-06-19
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明公开了一种异型分腔耐压供给贮箱结构及其设计方法,涉及主动热防护技术领域。该异型分腔耐压供给贮箱结构,包括储存液态工质的贮箱体和连接在贮箱体一侧的用于对液态工质进行收集和排出的集液排液体,所述集液排液体一侧设置有与其内部相连通的注液/排液口,并通过进气口连接驱动部件,驱动部件通过进气口将一定压力的气体引入到各个贮液腔内部,带压气体驱动液态工质到集液排液体的内部进行排出,高效可靠地存储和输运液态冷却工质,从而稳定地为主动冷却系统供应工质,不采用球状贮箱等结构,可以提高空间利用率,满足高集成度飞行器的设计要求,同时设置加强筋可以实现提高飞行器内空间狭小、扁平、异型空间设计的贮箱的承载能力。
-
公开(公告)号:CN116412563A
公开(公告)日:2023-07-11
申请号:CN202310538328.8
申请日:2023-05-12
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明提供一种制冷剂充注控制系统,制冷剂充注控制系统包括存储罐、真空泵、制冷剂管路、气液分离器、流量计、阀门、加热器、控制器等。制冷剂管路的输入端连接于存储罐,输出端连接于外部制冷系统;制冷剂管路连通真空泵,用于充注前排空制冷系统残余空气。制冷剂在存储罐内压作用下输入至外部制冷系统;制冷剂管路还连接有气液分离器、流量计、第一截止阀和第二截止阀;第一截止阀靠近存储罐,第二截止阀靠近外部制冷系统,此时,气液分离器将经存储罐输出的制冷剂进行气液分离,并允许处于液态的制冷剂进入至流量计,且对气态的制冷剂进行阻断,避免气液混合体对流量计的影响。
-
公开(公告)号:CN113515804B
公开(公告)日:2023-04-14
申请号:CN202110350567.1
申请日:2021-03-31
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G06F30/15 , G06F30/17 , G06F30/23 , G06F30/25 , G06F119/08
Abstract: 本发明涉及一种飞行器热密封结构内部流动传热的确定方法:每个计算周期执行:计算实际飞行条件下飞行器整体的周边流场,并获取所关注热密封结构的边界层内空间流场的物理参数;建立以“外部流场空间、热密封结构流道、飞行器内腔及出口”为边界的热密封结构有限元空间流场计算模型;将所关注热密封结构的边界层内空间流场的物理参数,作为外部流场输入条件,代入热密封结构有限元空间流场计算模型,采用DSMC方法,计算得到所关注热密封结构的内部空间流场的物理参数,直至流场稳定;如果所得DSMC方法计算结果不具备有效性,则对DSMC计算模型进行修正并续算至流场稳定,重复前一步过程直至DSMC方法计算结果具备有效性。
-
-
-
-
-
-
-
-
-