-
公开(公告)号:CN107958206B
公开(公告)日:2021-02-09
申请号:CN201711086206.0
申请日:2017-11-07
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种飞行器表面热流辨识装置温度测量数据预处理方法,属于航空航天飞行试验热学参数测量及处理技术领域。该方法首先对热流辨识装置的温升测量数据进行局部失真点(局部跳点)进行剔除的处理,然后利用N个相邻数据点平均的光滑处理方法对测量数据进行平滑处理,最后得到满足热流辨识要求的温度测量数据。所述N值根据温度传感器相关参数和温度曲线特征进行确定。使用本发明完成预处理后的温度测量数据进行热流辨识,可以有效改善温度阶跃和局部跳点对热流辨识结果的影响,提高热流辨识结果的准确度和可靠性。
-
公开(公告)号:CN106202804B
公开(公告)日:2019-08-09
申请号:CN201610586987.9
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
CPC classification number: Y02T90/50
Abstract: 基于数据库的复杂外形飞行器分布式热环境参数预测方法,属于航天器热环境设计领域。该方法建立飞行器表面热流数据库,利用POD方法对数据库进行降阶处理,得到数据库的正交基向量,结合相应的基系数插值方法,能够快速沿弹道预测飞行器表面热环境参数。该方法能够真实的反映出复杂外形飞行器表面各点气动热环境空间分布特征及干扰特征,和数值结果对比表明,该方法能够大幅提高计算效率,并且不损失预测精度。通过沿弹道各点为防热温度场计算提供表面分布式热流,能够得到更加精细的温度分布,从而提高整个防隔热系统的设计水平。
-
公开(公告)号:CN106706166A
公开(公告)日:2017-05-24
申请号:CN201611024191.0
申请日:2016-11-14
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01K17/06
CPC classification number: G01K17/06
Abstract: 适用于高焓中低热流环境的陶瓷壁面复合塞式热流传感器,涉及陶瓷壁面热流传感器设计领域;热流传感器包括石墨烯柱、刚性陶瓷隔热套、紫铜柱、热电偶、陶瓷涂层;其中,石墨烯柱的轴向一端与紫铜柱固定连接,石墨烯柱的轴向另一端覆盖有陶瓷涂层;在石墨烯柱的外侧壁和紫铜柱远离石墨烯柱的轴向端面包覆有刚性陶瓷隔热套;在紫铜柱的端面设置有热电偶;本发明解决了无法直接在紫铜柱表面制备陶瓷涂层的问题,缓解平面方向的热扩散,有效规避了陶瓷材料导热系数小,热响应慢的问题,为高超声速飞行器地面防热试验提供了更加精确的测热传感器。
-
公开(公告)号:CN107958102B
公开(公告)日:2021-06-11
申请号:CN201711086208.X
申请日:2017-11-07
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F30/20 , G06F30/15 , G06F119/08
Abstract: 本发明提供了一种用于高超声速气动热预测的偏差大气参数确定方法,属于高超声速飞行器气动热环境预示技术领域。该方法包括如下步骤:(1)、根据飞行弹道点的飞行高度H,由标准大气方程组,得出该弹道点对应的标准大气密度ρ;(2)、根据飞行弹道点的飞行高度H,由大气密度偏差Δρ与高度的关系,得出对应的大气密度偏差量Δρ,由标准大气密度ρ和大气密度偏差量Δρ,得出该飞行高度H对应的偏差大气密度ρ';(3)、根据偏差大气密度ρ',由标准大气方程组,反查出与偏差大气密度ρ'对应的偏差大气高度H';(4)、根据偏差大气高度H',由标准大气方程组,分别计算得到偏差大气压力P'和偏差大气温度T'。本发明相对其它方法来确定偏差大气参数,具有方便快速的特点。
-
公开(公告)号:CN107977491A
公开(公告)日:2018-05-01
申请号:CN201711117139.4
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 一种非稳态情况下飞行器空气舵缝隙的气动热评估方法,包括步骤如下:一、通过数值求解飞行器流场的N-S方程,获得飞行器外壁表面热流;二、对舵缝隙内是否存在非定常效应进行判断并相应处理;三、获得若干周期内舵缝隙区域特征点处定常方法的平均热流;四、获得若干周期内特征点处非定常方法的平均热流并和定常方法结果比较,根据情况相应处理;五、获得舵缝隙区域干扰因子,利用曲线拟合方法获得干扰因子随舵偏变化的分段解析函数曲线;六、将干扰因子的分段函数曲线嵌入到气动热工程计算程序,获得飞行器在设定弹道时间段的舵缝隙区域热环境结果。本发明在保证空气舵缝隙气动热评估结果可靠性的同时能够有效减小评估结果的冗余度。
-
公开(公告)号:CN108832670A
公开(公告)日:2018-11-16
申请号:CN201810569129.2
申请日:2018-06-05
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及一种便携式充电电源系统,包括杯身和杯盖,杯身和杯盖可拆卸连接,杯盖具有由杯盖外壳体构成的凹腔,锑化铋热电发电模块和稳压模块均由密封垫密封于所述凹腔内,锑化铋热电发电模块与稳压模块通过两根导线相连,稳压模块与USB电源输出接口通过两根导线相连,USB电源输出接口内置于杯盖外壳体中,并与外界相连通。工作时,打开杯盖,将热流体注入杯身,盖紧杯盖后将其倒置,让热流体接触到杯盖的密封垫,热量从密封垫传递至锑化铋热电发电模块,产生电量,电量经稳压模块稳压后经USB电源输出口向外供电。本发明的一种便携式充电电源系统具有安全、便捷、长寿命、永久无需充电的优点。
-
公开(公告)号:CN108132112A
公开(公告)日:2018-06-08
申请号:CN201711115268.X
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 李宇 , 陈伟华 , 黄建栋 , 刘国仟 , 聂亮 , 刘宇飞 , 檀妹静 , 景丽 , 高扬 , 聂春生 , 颜维旭 , 陈轩 , 周禹 , 曹占伟 , 王振峰 , 季妮芝 , 高翔宇 , 于明星 , 闵昌万 , 陈敏
Abstract: 本发明提供了一种高超声速飞行器表面热流辨识装置及设计方法,属于高超声速飞行器热参数测量技术领域。该装置包括:热传导敏感元件、敏感元件隔热套、敏感元件压板、温度传感器,热传导敏感元件为柱状结构,敏感元件隔热套为带通孔的柱状结构,热传导敏感元件位于敏感元件隔热套通孔中,与敏感元件隔热套间隙配合,敏感元件一侧与隔热套外表面平齐,形成测量端面,另一侧底部安装有温度传感器,敏感元件压板压住热传导敏感元件,与敏感元件隔热套间隙配合安装,敏感元件隔热套、敏感元件与敏感元件隔热套之间的间隙以及敏感元件压板共同阻隔热传导敏感元件除测量端面以外的部分与外部环境之间热量交换。本发明克服了传统热流传感器对于长时间高热流测量的适应性差以及传感器尺寸大、重量大、安装受限大、难以实现密集测量问题。
-
公开(公告)号:CN107958206A
公开(公告)日:2018-04-24
申请号:CN201711086206.0
申请日:2017-11-07
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种飞行器表面热流辨识装置温度测量数据预处理方法,属于航空航天飞行试验热学参数测量及处理技术领域。该方法首先对热流辨识装置的温升测量数据进行局部失真点(局部跳点)进行剔除的处理,然后利用N个相邻数据点平均的光滑处理方法对测量数据进行平滑处理,最后得到满足热流辨识要求的温度测量数据。所述N值根据温度传感器相关参数和温度曲线特征进行确定。使用本发明完成预处理后的温度测量数据进行热流辨识,可以有效改善温度阶跃和局部跳点对热流辨识结果的影响,提高热流辨识结果的准确度和可靠性。
-
公开(公告)号:CN106202804A
公开(公告)日:2016-12-07
申请号:CN201610586987.9
申请日:2016-07-22
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
CPC classification number: Y02T90/50 , G06F17/5095 , G06F17/5036 , G06F2217/80 , G06Q10/04
Abstract: 基于数据库的复杂外形飞行器分布式热环境参数预测方法,属于航天器热环境设计领域。该方法建立飞行器表面热流数据库,利用POD方法对数据库进行降阶处理,得到数据库的正交基向量,结合相应的基系数插值方法,能够快速沿弹道预测飞行器表面热环境参数。该方法能够真实的反映出复杂外形飞行器表面各点气动热环境空间分布特征及干扰特征,和数值结果对比表明,该方法能够大幅提高计算效率,并且不损失预测精度。通过沿弹道各点为防热温度场计算提供表面分布式热流,能够得到更加精细的温度分布,从而提高整个防隔热系统的设计水平。
-
公开(公告)号:CN110806300B
公开(公告)日:2021-02-09
申请号:CN201910969230.1
申请日:2019-10-12
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01M9/06
Abstract: 一种适用于高超声速飞行试验转捩研究的测点布置方法,通过下述方式实现:S1、根据测量需求,确定是测量自然转捩还是强制转捩,若为测量自然转捩,则转S2;若为强制转捩,则转S3;S2、根据测量需求测量主流转捩情况和或横流效应的转捩情况,其中测量主流转捩情况时,测点布置高超声速飞行器主流方向的流线上;测量横流效应的转捩情况时,将测点布置于侧向具有横流速度的位置上;所述的主流方向为飞行器中心流线方向及与其夹角不超过3°的流线方向;S3、在所述飞行器上预先确定的位置设置粗糙元,并将测点布置在粗糙元所在流线的下游;上述测点位置通过安装传感器实现飞行试验过程中飞行器表面物理量的测量。
-
-
-
-
-
-
-
-
-