-
公开(公告)号:CN107976296B
公开(公告)日:2019-10-22
申请号:CN201711116305.9
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Abstract: 本发明提供了一种基于回溯自适应算法的飞行器气动特性在线辨识方法,包括步骤:(1)、将飞行器角速度动力学方程中转动惯量矩阵的逆与力矩向量的乘积项等效变换成φT(k)θ*形式,并将其进行离散化处理,得到飞行器角速度的差分方程;其中,φT(k)为信号向量,θ*为参数真值向量,所述真值参数向量为包含待辨识气动特性参数的列向量;(2)、建立角速度估计虚拟系统的数学模型,使得角速度估计误差与参数估计误差为φT(k)[θ(k)‑θ*],其中,θ(k)为参数真值向量的估计值;(3)、建立角速度估计误差的回溯性能公式,结合回溯更新律,实时获取φ(k),采用回溯自适应方法解算θ(k),使角速度估计误差趋近于0,根据θ(k)的值解算待辨识气动特性参数。该方法计算量更小,对计算机要求更低,具有可操作性。
-
公开(公告)号:CN106643341B
公开(公告)日:2018-06-01
申请号:CN201710103771.7
申请日:2017-02-24
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: F42B15/01
Abstract: 基于准平衡滑翔原理的力热控制耦合设计方法,基于准平衡滑翔原理,利用当地弹道倾角变化率以及当地弹道倾角接近为零的假设,建立再入飞行器动力学模型,将力热约束转化为飞行走廊约束,以倾侧角为单变量进行优化,将飞行轨迹控制在飞行走廊内,满足力热要求与航程要求。本发明将热流、过载等约束条件转化为等效升阻比的边界,通过等效升阻比实现了力热控的紧耦合设计,提升了滑翔飞行器的整体性能,解决了力热控互相制约、耦合设计难的问题。
-
公开(公告)号:CN107966162A
公开(公告)日:2018-04-27
申请号:CN201711125078.6
申请日:2017-11-14
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01C25/00
Abstract: 本发明涉及飞行器过载传感器系统级安装误差标定系统及方法,属于飞行器总体气动辨识技术领域。本发明的飞行器过载传感器系统级安装误差标定方法,用于飞行试验后修正过载测量数据,确保飞行器气动参数辨识的精度和可信性,也可以作为飞行器的设计参数,用于飞行导航解算。
-
公开(公告)号:CN107894778A
公开(公告)日:2018-04-10
申请号:CN201711125083.7
申请日:2017-11-14
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
CPC classification number: G05D1/0808 , G05D1/101
Abstract: 一种基于相平面分析的飞行器大幅调姿控制方法,步骤如下:(1)确定飞行器参数:包括初始角速度ω0,最大角加速度绝对值 预设角速度ωswitch,原始目标姿态角θcxt,0,角度单位均采用弧度;(2)根据上述初始角速度ω0,最大角加速度绝对值 以及原始目标姿态角θcxt,0,计算目标姿态角θcxt;(3)在每个控制周期,执行如下步骤:(3.1)实时获取飞行器的实际角速度ω与实际姿态角θ;(3.2)计算切换姿态角θswitch以及实际姿态角与目标姿态角间的偏差θe=θ-θcxt;(3.3)设置精控区,在精控区内外采用不同的控制律进行控制。
-
公开(公告)号:CN107103117A
公开(公告)日:2017-08-29
申请号:CN201710188360.2
申请日:2017-03-27
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F17/50
Abstract: 本发明公开了一种高超声速飞行器控制舵缝隙的热环境设计方法,包括:基于飞行器简化外形,采用气动热工程预示方法开展气动热环境预示,得到气动热工程预示结果;根据气动热工程预示结果确定控制舵舵轴截面位置流态沿弹道的变化,针对流态发生变化的弹道时间段,对多组典型弹道点开展不同流态情况下真实外形的飞行器热环境数值计算,得到飞行器控制舵缝隙区域的热流分布;选用层流流态开展控制舵缝隙区域的热环境数值计算,根据计算结果对气动热工程预示结果进行修正;根据修正结果对控制舵缝隙区域的热环境沿弹道进行设计。通过本发明解决了高超声速滑翔飞行器弹道条件下控制舵舵缝隙区域流态复杂、难以预测,并且热环境严重,造成局部防热风险较难评估的问题。
-
公开(公告)号:CN106950982A
公开(公告)日:2017-07-14
申请号:CN201710083867.1
申请日:2017-02-16
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 张鹏宇 , 陈芳 , 王颖 , 程璞 , 肖振 , 王毓栋 , 闵昌万 , 陈敏 , 刘秀明 , 武斌 , 吴小华 , 姜智超 , 郭振西 , 陈安宏 , 黄兴李 , 朱广生 , 阎君
IPC: G05D1/10
Abstract: 再入飞行器姿控动力系统高空力矩特性辨识方法,首先对飞行试验数据进行预处理得到x、y、z三个通道的角速度和角加速度,然后利用公式计算x、y、z三个通道的力矩,接着对姿控动力系统三通道力矩进行建模,最后基于最小二乘准则的方程误差法进行高空力矩特性辨识。本发明能够获得更准确的辨识结果,尤其在RCS开关频率较高时,相对于传统方法,本发明辨识结果改善效果更加明显。
-
公开(公告)号:CN106643341A
公开(公告)日:2017-05-10
申请号:CN201710103771.7
申请日:2017-02-24
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: F42B15/01
CPC classification number: F42B15/01
Abstract: 基于准平衡滑翔原理的力热控制耦合设计方法,基于准平衡滑翔原理,利用当地弹道倾角变化率以及当地弹道倾角接近为零的假设,建立再入飞行器动力学模型,将力热约束转化为飞行走廊约束,以倾侧角为单变量进行优化,将飞行轨迹控制在飞行走廊内,满足力热要求与航程要求。本发明将热流、过载等约束条件转化为等效升阻比的边界,通过等效升阻比实现了力热控的紧耦合设计,提升了滑翔飞行器的整体性能,解决了力热控互相制约、耦合设计难的问题。
-
公开(公告)号:CN107977491B
公开(公告)日:2021-09-03
申请号:CN201711117139.4
申请日:2017-11-13
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G06F30/23 , G06F30/15 , G06F119/08 , G06F119/02
Abstract: 一种非稳态情况下飞行器空气舵缝隙的气动热评估方法,包括步骤如下:一、通过数值求解飞行器流场的N-S方程,获得飞行器外壁表面热流;二、对舵缝隙内是否存在非定常效应进行判断并相应处理;三、获得若干周期内舵缝隙区域特征点处定常方法的平均热流;四、获得若干周期内特征点处非定常方法的平均热流并和定常方法结果比较,根据情况相应处理;五、获得舵缝隙区域干扰因子,利用曲线拟合方法获得干扰因子随舵偏变化的分段解析函数曲线;六、将干扰因子的分段函数曲线嵌入到气动热工程计算程序,获得飞行器在设定弹道时间段的舵缝隙区域热环境结果。本发明在保证空气舵缝隙气动热评估结果可靠性的同时能够有效减小评估结果的冗余度。
-
公开(公告)号:CN110806300A
公开(公告)日:2020-02-18
申请号:CN201910969230.1
申请日:2019-10-12
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
IPC: G01M9/06
Abstract: 一种适用于高超声速飞行试验转捩研究的测点布置方法,通过下述方式实现:S1、根据测量需求,确定是测量自然转捩还是强制转捩,若为测量自然转捩,则转S2;若为强制转捩,则转S3;S2、根据测量需求测量主流转捩情况和或横流效应的转捩情况,其中测量主流转捩情况时,测点布置高超声速飞行器主流方向的流线上;测量横流效应的转捩情况时,将测点布置于侧向具有横流速度的位置上;所述的主流方向为飞行器中心流线方向及与其夹角不超过3°的流线方向;S3、在所述飞行器上预先确定的位置设置粗糙元,并将测点布置在粗糙元所在流线的下游;上述测点位置通过安装传感器实现飞行试验过程中飞行器表面物理量的测量。
-
公开(公告)号:CN106932164B
公开(公告)日:2019-02-19
申请号:CN201710083871.8
申请日:2017-02-16
Applicant: 北京临近空间飞行器系统工程研究所 , 中国运载火箭技术研究院
Inventor: 张鹏宇 , 陈芳 , 王颖 , 程璞 , 肖振 , 王毓栋 , 闵昌万 , 陈敏 , 刘秀明 , 杨丁 , 秦小丽 , 张宁宁 , 吴小华 , 陈安宏 , 黄兴李 , 朱广生 , 阎君
Abstract: 一种基于气动导数辨识结果的气动数据修正方法,首先根据预示气动数据计算出气动导数,然后建立气动数据修正方程,接着通过气动导数辨识获得的气动导数阶次,计算气动力六分量零次项修正量和气动数据表中第i个变量气动导数的修正量,最后根据气动数据表中所有变量和气动数据修正方程,计算出气动力六分量修正量,利用该修正量完成对应气动数据的修正。本发明以预示气动数据导数为基准,充分利用气动辨识获得的气动导数对预示气动数据进行修正,不论预示气动数据在配平状态附近的导数是否准确,均能得到准确的气动数据。
-
-
-
-
-
-
-
-
-