-
公开(公告)号:CN103278643A
公开(公告)日:2013-09-04
申请号:CN201310182719.7
申请日:2013-05-16
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N33/68
Abstract: 本发明涉及一种用于微量蛋白检测的微芯片的制备方法,包括:以硅片为基底材料,以SU-8光刻胶作为掩模层,分别曝光、显影制作模具A和模具B;将PDMS和固化剂混合后,分别浇注在模具A和模具B上,加热固化;分别剥离A-PDMS、B-PDMS;A-PDMS打孔后,与经过处理的玻璃片贴合;将A-PDMS揭掉后,将固定有抗体的玻璃片与B-PDMS对准贴合,并取另一经打孔的玻璃片贴合在B-PDMS的另一面,即得微芯片。本发明的微芯片将全血中血浆的分离、检测连接为一体,可以一次针对多个靶目标的检测,具有特异、快速和高灵敏的特点,可望应用于临床中微量全血中多种蛋白的诊断和检测。
-
公开(公告)号:CN101545007B
公开(公告)日:2013-06-26
申请号:CN200910050299.0
申请日:2009-04-30
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C12Q1/68 , C12N15/11 , G01N33/533 , G01N33/577 , G01N33/543 , G01N21/64
Abstract: 本发明是一种纳米金生物复合探针、检测方法及其应用,其特征在于首先用待测蛋白质的单克隆抗体标记磁珠,再在纳米金上标记待测蛋白的多克隆抗体的同时还标记一种带有生物素标记的DNA探针,纳米金上的DNA探针再通过生物素-链霉亲和素反应,使镧系元素接到胶体金上构建成纳米金生物复合探针,将标记好待测蛋白质单克隆抗体的磁珠及纳米金生物复合探针与待测蛋白质样品混合,37℃孵育一段时间,洗去没有反应的纳米金探针,加入增强液,测定荧光强度,从而达到对待测蛋白质进行定量测定的目的。使用本发明的方法,可显著提高生物分子的检测灵敏度,且可同时检测多种生物分子。可广泛应用于临床诊断、抗原、抗体、核酸的检测、卫生检疫、环境检测等领域。
-
公开(公告)号:CN102954985A
公开(公告)日:2013-03-06
申请号:CN201110254076.3
申请日:2011-08-31
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N27/02
Abstract: 本发明涉及一种电阻抗式细菌快速检测传感器的数据分析方法。该传感器基于电阻抗法原理,采用MEMS技术,设计并制造了叉指式电极用于细菌的快速测定。将叉指式电极采集到的阻抗和相位信号进行处理,获得Nyquist曲线。而Nyquist曲线的斜率对细菌的数量进行了良好的表征。在细菌生长过程中Nyquist曲线的斜率变化近似呈线性关系,以此建立此参数值与样品中原始菌量的关系,用于细菌种类及细菌数量的测定。该数据分析方法降低了对测试电极以及测量环境的要求,并缩短了细菌测定所需要的时间,可用于微生物的快速检测中。
-
公开(公告)号:CN102604827A
公开(公告)日:2012-07-25
申请号:CN201210093107.6
申请日:2012-03-31
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及非接触式电导法实现PCR过程的实时检测系统和方法,其特征在于所述系统包括基于MEMS集成的PCR微芯片、交流激励电源、电流转电压及放大电路、温度传感电路、加热电路、数模/模数转换接口DAQ及上位的Labview控制中心;所述的集成PCR微芯片集成了微反应腔、温度传感电极和加热电极以及电化学检测电极,硅基底正面刻蚀微反应腔,背面集成加热电极和温度传感电极;电化学检测电极为叉指电极,通过绝缘层与硅基底键合,与微反应腔形成密闭结构,通过控制硅基底背面的温度传感电极和加热电极实现扩增反应所需的温度循环。本发明所述的检测系统的灵敏度和分辨率可达fg/μL以下,电极复用性高,使用寿命长、检测结果可靠性高。
-
公开(公告)号:CN102313814A
公开(公告)日:2012-01-11
申请号:CN201110211260.X
申请日:2011-07-22
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N33/68 , G01N33/574
Abstract: 本发明是一种基于纳米金增强的多种肺癌标志物。高灵敏度检测方法,检测步骤为:1)先将各待测蛋白质的捕捉抗体点样到醛基修饰的基片上;2)然后在纳米金上标记上待测蛋白的多克隆或单克隆检测抗体;3)将标记好待测蛋白质捕捉抗体的蛋白芯片及纳米金生物复合探针与待测蛋白质样品混合,37℃孵育一段时间,洗去没有反应的纳米金探针;4)加入金增强反应液,肉眼或显微镜下观察、或用CCD扫描拍照,根据灰度值测定相应的蛋白浓度。本发明提供的方法可广泛应用于临床诊断、肿瘤转移监测、抗原、抗体、核酸的检测、卫生检疫、环境检测等领域,检测蛋白质的灵敏度达pg/ml级。
-
公开(公告)号:CN102158552A
公开(公告)日:2011-08-17
申请号:CN201110078979.0
申请日:2011-03-30
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种食品中细菌、重金属和农兽药残留的无线监控网络,包括客户端、数据处理与控制平台、互联网访问平台和短信访问平台,采用生物发光或化学发光的原理利用传感器终端可以同时检测细菌总量、致病菌数量、总金属包括(汞、铅、镉、类金属砷)含量、农兽药(有机磷农药)含量,并将这些数据与无线定位数据通过自身集成的无线通讯模块结合无线网络传输到远程服务器,企业质量部门或政府监管部门可以通过互联网平台或短信平台访问该服务器,进行数据分析,一旦发现数据异动,可以对食品流通环节进行控制,真正意义上在食品流通的整个环节都进行监测,而且能及时反馈控制手段。
-
公开(公告)号:CN102147414A
公开(公告)日:2011-08-10
申请号:CN201010617918.2
申请日:2010-12-30
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N33/68 , G01N33/532 , G01N33/543 , B81C1/00
Abstract: 本发明涉及一种基于纳米探针的微流体芯片检测微量蛋白的方法,其特征在于采用标准的光刻工艺实现微结构的制作,用玻璃片(点有DNA探针)与微结构封接制备了所需的微流体芯片;在纳米金颗粒上同时标记单克隆二抗及信号放大作用的Barcode DNA,并在磁珠上标记单克隆一抗;在微流体芯片管道内,通过抗原抗体免疫反应以及信号的逐级放大、银染显色,从而达到对微量目标蛋白的检测。所述的方法将生物样品的富集、分离和检测连接为一体,具有特异、快速和高灵敏的特点,可望应用于临床检验医学中微量蛋白(抗原或抗体)的诊断和检测。灵敏度可达pg/ml,比临床中普通的LEISA法提高了1000倍。
-
公开(公告)号:CN101182578B
公开(公告)日:2011-04-20
申请号:CN200710170613.X
申请日:2007-11-19
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C12Q1/68
Abstract: 本发明涉及一种基于纳米金探针的基因芯片的高灵敏度的DNA检测方法,其特征在于首先将纳米金通过低温离心浓缩富集,用无菌去离子水或TE(PH7.4)按一定浓度重悬,再在纳米金里加一定量的巯基修饰的DNA信号探针,大大节约了巯基修饰DNA的用量;标记完后,与待测目的分子一起置于芯片上采用一步法杂交,将待测DNA与芯片上的捕捉探针及标记纳米金的信号探针同时杂交上,杂交完后再进行清洗,晾干,加改进的银染试剂于芯片上进行银染显色,使杂交信号强度大大提高,以提高检测灵敏度,肉眼观测或用CCD扫描拍照。本发明提供的检测方法具有大大降低DNA探针用量、灵敏度高和信号检测方便等优点。
-
公开(公告)号:CN101000290B
公开(公告)日:2011-04-20
申请号:CN200710036415.4
申请日:2007-01-12
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种基于微纳米结构的样品富集芯片、制作方法及富集方法,其特征在于所述的富集芯片是以石英玻璃为基底材料,由富集纳米沟道和微米级样品传输管道组成,富集纳米沟道架在两微米级管道间。首先应用MEMS工艺在石英玻璃表面加工出纳米沟道及样品运输通道,严格控制纳米沟深度,使其符合离子陷落要求;利用低温键合方法,将打好样品孔的基片与盖片低温键合。然后在芯片管道中灌入需要富集的样品,在样品池间加直流电压,在纳米沟中形成电场;由于纳米沟道内德拜层的叠加,而在纳米沟旁形成离子陷落带;在电场作用下运动的样品由于无法通过离子陷落带而在纳米沟旁富集,形成样品富集带。具有芯片体积小和富集过程中不破坏富集成分的特点。
-
公开(公告)号:CN101182579B
公开(公告)日:2010-12-08
申请号:CN200710170616.3
申请日:2007-11-19
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C12Q1/68
Abstract: 本发明涉及的是一种无需扩增基因组DNA的纳米探针芯片及检测方法。其特征在于:未标记靶核酸的检测是通过两步连续的与等位特异地固定在芯片表面的捕捉探针以及标记纳米金颗粒的特异寡核苷酸探针的三明治杂交反应,经过银染增强的纳米金信号放大效应产生高灵敏的识别信号,然后直接用显微镜进行观察或者用普通光学扫描仪进行扫描直接得到相应的杂交结果,也可通过相关软件进行分析,得出检验报告。与传统的基于荧光信号检测的方法相比,本方法大大提高了检测的灵敏度和特异性,能够检测未扩增的基因组DNA样品中的靶基因及单碱基突变。
-
-
-
-
-
-
-
-
-