一种GOI晶片结构的制备方法

    公开(公告)号:CN102738060B

    公开(公告)日:2014-04-23

    申请号:CN201210225637.1

    申请日:2012-07-02

    CPC classification number: H01L21/76254

    Abstract: 本发明提供一种GOI晶片结构的制备方法,该方法首先利用Smart-Cut技术制作出SGOI晶片结构,然后对SGOI晶片结构进行锗浓缩,从而得到GOI晶片结构。由于利用Smart-Cut技术制作的SGOI在SGOI/BOX界面基本不存在失配位错,从而最终降低了GOI的穿透位错。本发明工艺简单,可实现高质量GOI晶片结构,大大改进了锗浓缩技术,离子注入技术、退火技术在目前半导体行业都是非常成熟的工艺,该制备方法大大提高了锗浓缩在半导体工业界广泛应用的可能性。

    一种SGOI结构的制备方法
    12.
    发明公开

    公开(公告)号:CN103646910A

    公开(公告)日:2014-03-19

    申请号:CN201310724465.7

    申请日:2013-12-24

    CPC classification number: H01L21/7624

    Abstract: 本发明提供一种SGOI结构的制备方法,至少包括以下步骤:S1:提供一SOI衬底,在所述顶层硅表面外延生长一单晶SiGe层;S2:在所述单晶SiGe层表面形成一Si帽层;S3:从所述Si帽层正面进行离子注入,注入深度到达所述顶层硅中;S4:将步骤S3获得的结构进行锗浓缩,形成自下而上依次包含有背衬底、埋氧层、预设Ge浓度SiGe层及SiO2层的叠层结构;S5:腐蚀掉所述叠层结构表面的SiO2层以得到SGOI结构。本发明结合离子注入技术和锗浓缩工艺制备高质量高Ge浓度的SGOI结构,离子注入减弱了顶层硅与所述SiGe层之间的晶格失配,且伴随退火过程的进行,位错环在纵向方向上相互作用并相互抵消,使应力得到释放,从而使最终获得的SGOI结构中穿透位错密度大大降低。

    一种绝缘体上含锗薄膜结构的制备方法

    公开(公告)号:CN103646853A

    公开(公告)日:2014-03-19

    申请号:CN201310724004.X

    申请日:2013-12-24

    CPC classification number: H01L21/02422 H01L21/02617 H01L21/02664

    Abstract: 本发明提供一种绝缘体上含锗薄膜结构的制备方法,包括以下步骤:S1:提供一sSOI衬底,在张应变顶层硅表面外延生长一预设Ge组分的单晶SiGe薄膜;所述张应变顶层硅的晶格长度与所述单晶SiGe薄膜的晶格长度相等;S2:在所述单晶SiGe薄膜表面形成一Si帽层;S3:将步骤S2获得的结构进行锗浓缩,形成自下而上依次包含有背衬底、埋氧层、含锗薄膜及SiO2层的叠层结构;S4:腐蚀掉所述叠层结构表面的SiO2层以得到绝缘体上含锗薄膜结构。本发明通过选择合适张应变顶层硅及相应含锗组分的单晶SiGe薄膜,使得张应变顶层硅与其上的单晶SiGe薄膜的晶格匹配,从而降低缺陷来源,能够获得高质量的SGOI或GOI材料。

    一种制备直接带隙Ge薄膜的方法

    公开(公告)号:CN103065938A

    公开(公告)日:2013-04-24

    申请号:CN201210593808.6

    申请日:2012-12-31

    Abstract: 本发明涉及一种制备直接带隙Ge薄膜的方法,包括提供一GeOI衬底;对所述顶层锗纳米薄膜进行图形化处理,开出若干与底部所述埋氧层贯通的腐蚀窗口;湿法腐蚀直至埋氧层被彻底腐蚀掉,使得所述图形化的顶层锗纳米薄膜与硅衬底虚接触;提供一PDMS载体,所述PDMS载体与所述顶层锗纳米薄膜紧密接触,从而将与硅衬底虚接触的顶层锗纳米薄膜转移到PDMS载体上;将该PDMS载体两端夹紧,并反向施加机械拉伸使得顶层锗纳米薄膜随着PDMS载体的拉伸而形变,在其内部产生张应变。采用本发明的方法制备的直接带隙Ge薄膜应变大小可控,可用于光电器件;其具有低缺陷、低位错密度的特点;通过机械拉伸制备直接带隙Ge纳米薄膜的方法工艺简单,成本较低。

    一种GOI晶片结构的制备方法

    公开(公告)号:CN102738060A

    公开(公告)日:2012-10-17

    申请号:CN201210225637.1

    申请日:2012-07-02

    CPC classification number: H01L21/76254

    Abstract: 本发明提供一种GOI晶片结构的制备方法,该方法首先利用Smart-Cut技术制作出SGOI晶片结构,然后对SGOI晶片结构进行锗浓缩,从而得到GOI晶片结构。由于利用Smart-Cut技术制作的SGOI在SGOI/BOX界面基本不存在失配位错,从而最终降低了GOI的穿透位错。本发明工艺简单,可实现高质量GOI晶片结构,大大改进了锗浓缩技术,离子注入技术、退火技术在目前半导体行业都是非常成熟的工艺,该制备方法大大提高了锗浓缩在半导体工业界广泛应用的可能性。

    应力可调的悬浮应变薄膜结构及其制备方法

    公开(公告)号:CN105321821B

    公开(公告)日:2018-09-25

    申请号:CN201410328962.X

    申请日:2014-07-11

    Abstract: 本发明提供一种应力可调的悬浮应变薄膜结构及其制备方法,该方法包括以下步骤:S1:提供一自上而下依次包括顶层应变半导体层、埋氧层及半导体衬底的半导体结构,刻蚀顶层应变半导体层形成预设图形微结构及基座;所述微结构包括一对平板及连接于该一对平板之间的至少一条中心桥线;所述平板的外端连接于基座;S2:通过干法腐蚀去除所述微结构下方的埋氧层以释放微结构,使得所述平板应力弛豫,中心桥线应力增加。本发明通过弹性变形机制和图形化改变顶层应变半导体层本身的固有应力,使得平板应力弛豫,而中心桥线应力增加,从而实现应力大小及应力区域的调控,在绝缘体上应变半导体材料结构上制备高质量、大应变的应变纳米线,工艺简单高效。

    一种厚度可控的绝缘体上半导体材料的制备方法

    公开(公告)号:CN104425342B

    公开(公告)日:2017-08-15

    申请号:CN201310382840.4

    申请日:2013-08-28

    Abstract: 本发明提供一种厚度可控的绝缘体上半导体材料的制备方法,包括步骤:1)于第一衬底表面外延一掺杂的单晶薄膜;2)依次外延一重掺杂单晶层及一顶层半导体材料;3)将剥离离子注入至单晶薄膜下方的第一衬底预设深度的位置;4)提供表面具有绝缘层的第二衬底,并键合绝缘层及顶层半导体材料;5)使重掺杂单晶层与第一衬底从该单晶薄膜处分离;6)采用预设溶液腐蚀以去除重掺杂单晶层,其中,所述预设溶液对重掺杂单晶层的腐蚀速率大于其对顶层半导体材料的腐蚀速率。本发明通过掺杂的超薄单晶薄膜实现剥离,将剥离面控制在非常薄的一个层面内;通过高选择比的腐蚀工艺,可以制作出高质量且厚度可控性高的绝缘体上半导体材料。

    一种锗纳米线场效应晶体管及其制备方法

    公开(公告)号:CN104332405B

    公开(公告)日:2017-02-15

    申请号:CN201410482922.0

    申请日:2014-09-19

    Abstract: 本发明提供一种锗纳米线场效应晶体管的制备方法,包括步骤1)提供SGOI衬底结构;2)刻蚀SiGe层,形成SiGe纳米线阵列;3)对步骤2)的结构进行锗浓缩,得到表面被SiO2层包裹的锗纳米线阵列;4)去除包裹在纳米线两端表面的SiO2层,裸露出锗纳米线的两端;5)在锗纳米线的延长线上沉积金属引线、源极电极和漏极电极,在硅衬底上制作栅极电极;6)在步骤5)的结构表面形成Si3N4保护层;7)去除纳米线图形区域和金属电极图形区域内的Si3N4保护层,直至完全露出锗纳米线、源极电极和漏极电极。本发明的锗纳米线基于自上而下的方法,工艺过程简单,可控性强,与传统的CMOS工艺完全兼容,成本较低,适于工业生产。

    应力可调的悬浮应变薄膜结构及其制备方法

    公开(公告)号:CN105321821A

    公开(公告)日:2016-02-10

    申请号:CN201410328962.X

    申请日:2014-07-11

    Abstract: 本发明提供一种应力可调的悬浮应变薄膜结构及其制备方法,该方法包括以下步骤:S1:提供一自上而下依次包括顶层应变半导体层、埋氧层及半导体衬底的半导体结构,刻蚀顶层应变半导体层形成预设图形微结构及基座;所述微结构包括一对平板及连接于该一对平板之间的至少一条中心桥线;所述平板的外端连接于基座;S2:通过干法腐蚀去除所述微结构下方的埋氧层以释放微结构,使得所述平板应力弛豫,中心桥线应力增加。本发明通过弹性变形机制和图形化改变顶层应变半导体层本身的固有应力,使得平板应力弛豫,而中心桥线应力增加,从而实现应力大小及应力区域的调控,在绝缘体上应变半导体材料结构上制备高质量、大应变的应变纳米线,工艺简单高效。

Patent Agency Ranking