基于纳米探针直接检测肺癌样品中P53基因突变的方法

    公开(公告)号:CN101392286B

    公开(公告)日:2011-08-10

    申请号:CN200710170614.4

    申请日:2007-11-19

    Abstract: 本发明涉及的是一种基于纳米探针直接检测肺癌样品中p53基因突变的方法,其特征在于未标记的靶核酸序列以及纳米金标记的信号探针与固相支持物连接的捕获探针进行的夹心杂交,并通过银染增强的纳米金信号放大效应产生高灵敏的识别信号。该方法能够检测未扩增的基因组DNA样品中的单碱基突变。与传统的基于荧光信号检测的方法相比,本发明提供的纳米芯片检测方法大大提高了检测的灵敏度和特异性,并可通过普通的光学扫描仪或者普通的电荷藕合器件(CCD)数字照相机就可以对杂交信号进行采集和分析,也可通过相关软件进行分析,得出检验报告。

    一种基于核酸横向流试纸条检测单核苷酸多态性的方法

    公开(公告)号:CN102134596A

    公开(公告)日:2011-07-27

    申请号:CN201010608280.6

    申请日:2010-12-28

    Abstract: 本发明涉及一种基于核酸横向流试纸条检测单核苷酸多态性的方法,包括:(1)核酸横向流试纸条的制备;(2)取待测样本,变性,退火;取水、纳米金探针溶液、连接探针、Taq DNA连接酶缓冲液和Taq DNA连接酶,打匀,得混合液;向混合液中加入KIF-1、KIF-2或它们的混合液,打匀;然后加入待测样本,杂交连接,变性,退火,最后将所得溶液滴加在核酸横向流试纸条的结合区,将试纸条浸入区浸入运行缓冲液中,观察。本发明的方法操作简单,成本低,具有特异、快速、高分辨、高灵敏度的特点,可应用于临床医学中遗传病、传染性疾病、肿瘤以及心血管疾病中基因的单核苷酸多态性、基因型的检测以及不同病原微生物的鉴定。

    纳米金结合聚噻吩衍生物比色检测目标靶DNA的方法

    公开(公告)号:CN101818198A

    公开(公告)日:2010-09-01

    申请号:CN201010118181.X

    申请日:2010-03-05

    Abstract: 本发明涉及一种纳米金结合聚噻吩衍生物比色检测目标靶DNA的方法,包括:检测试剂(纳米金和聚噻吩衍生物)及探针的准备;目标靶序列的检测等。该发明基于聚噻吩衍生物与ssDNA/dDNA结合时使得DNA-纳米金溶液的稳定性发生变化而引起颜色改变产生信号级联放大的原理,通过颜色转变显示剂以及扩增标签的双重作用实现DNA的高灵敏快速检测,从而建立利用纳米金结合聚噻吩衍生物进行基因直接检测的分析平台。该方法操作简单,不需要特殊的仪器设备,具有特异、快速和高灵敏的特点,可望应用于临床检验医学及环境中靶目标DNA的诊断和检测。

    一种三维柔性神经微电极及制作方法

    公开(公告)号:CN101172184B

    公开(公告)日:2010-09-01

    申请号:CN200710046885.9

    申请日:2007-10-10

    Abstract: 本发明公开了一种三维柔性神经微电极及其制作方法,该微电极利用柔性聚合物作为基底材料,通过金属种子层的环状图案设计,进行递进式电镀,形成具有圆滑三维凸起特征的电极位点结构,该结构既可保证电极位点与神经细胞的良好接触,同时又可避免现有三维神经微电极中凸起电极位点的锐利棱角对神经组织的损伤。另外,在电镀过程中通过复合电镀工艺,即电镀液中添加纳米级分散剂,使电极表面形成亚微米级的微孔结构,增加电极位点的表面积,从而增强电极的电流输出能力,保证神经微电极在生物安全性条件限制下的有效刺激。本发明提供的三维柔性神经微电极可广泛应用于神经疾病治疗、神经康复、神经生物学基础研究等领域。

    一种集成药剂释放功能的植入式微电极、制作方法及应用

    公开(公告)号:CN100591391C

    公开(公告)日:2010-02-24

    申请号:CN200610029533.8

    申请日:2006-07-28

    Abstract: 本发明公开了一种集成药剂释放功能的植入式微电极、制作方法及应用,所述的微电极包含功能区域、连线区域和焊接点区域。功能区域同时包含有可实现电刺激或电记录的金属位点结构和实现药剂释放的微池。微电极上金属位点结构和焊接点区域焊接电极之间的连线结构则由基底材料和一层绝缘材料包夹而与外界隔离;微池结构包含至少一个开口,每个开口以纳米孔膜覆盖,并以一层生物可降解聚合物膜密封;微池结构中加工有至少一个对酸性敏感的水凝胶微柱结构,微电极植入体内后通过水凝胶与生理体液接触发生膨胀,将微池中的药剂挤出,达到体内药剂自动释放的目的。用于截断外周神经再生或用作神经假体中的神经——电子接口器件。

    一种高密度植入式平面阵列微电极及制作方法

    公开(公告)号:CN100563748C

    公开(公告)日:2009-12-02

    申请号:CN200710040830.7

    申请日:2007-05-18

    Abstract: 本发明公开了一种高密度植入式平面阵列微电极及其制作方法,其特征在于所述的阵列微电极利用聚合物作为绝缘层材料,通过隔层布线的设计,将电极刺激位点或记录位点与其连接导线分布在不同的绝缘层之间,并在隔离绝缘层上制作通孔结构,由电镀工艺在通孔中形成金属连接结构,实现位于隔离绝缘层上下电极刺激位点或记录位点与其连接导线的连接;其中电镀工艺后,采用化学抛光的方法对上层表面进行抛光,保证电镀金属柱与上层溅射金属层良好的电连接。本发明提供的制作方法可以在单位面积上制作比常规单层布线设计更高密度的阵列微电极,实现植入式阵列微电极更高选择性刺激或记录。

    基于纳米探针直接检测肺癌样品中P53基因突变的方法

    公开(公告)号:CN101392286A

    公开(公告)日:2009-03-25

    申请号:CN200710170614.4

    申请日:2007-11-19

    Abstract: 本发明涉及的是一种基于纳米探针直接检测肺癌样品中p53基因突变的方法,其特征在于未标记的靶核酸序列以及纳米金标记的信号探针与固相支持物连接的捕获探针进行的夹心杂交,并通过银染增强的纳米金信号放大效应产生高灵敏的识别信号。该方法能够检测未扩增的基因组DNA样品中的单碱基突变。与传统的基于荧光信号检测的方法相比,本发明提供的纳米芯片检测方法大大提高了检测的灵敏度和特异性,并可通过普通的光学扫描仪或者普通的电荷藕合器件(CCD)数字照相机就可以对杂交信号进行采集和分析,也可通过相关软件进行分析,得出检验报告。

    一种基于聚合物基底的凸起电极、制作方法及应用

    公开(公告)号:CN100461981C

    公开(公告)日:2009-02-11

    申请号:CN200610026292.1

    申请日:2006-04-29

    Abstract: 本发明公开了一种基于聚合物基底的凸起电极、制备方法及应用,其特征在于采用具有生物相容性和柔性聚合物作为基底材料和加工凸起电极结构,保证电极的刺激点与神经的充分接触,改善神经电刺激和神经信号记录的效果。本发明以各向异性湿法腐蚀硅片制作模具,氧化硅片模具表面形成二氧化硅作为牺牲层,通过剥离、注胶、释放牺牲层得到凸起聚合物微电极(见摘要附图)。本发明提供的基于聚合物基底的凸起电极制备方法具有与传统的微机电(Micro-Electro-Mechanical System,MEMS)加工工艺兼容、可标准化大批量制作的特点。本发明制作的电极可广泛应用于神经康复、神经生物学等领域。

    一种微生化检测和分析方法及仪器

    公开(公告)号:CN100445727C

    公开(公告)日:2008-12-24

    申请号:CN200310122882.0

    申请日:2003-12-30

    Abstract: 本发明涉及微生化检测和分析方法及仪器,方法特征在于,采用紫外检测将待测样品加入微通道芯片中进行电泳,在电场的作用下,不同长度的片段将按不同的迁移率分开,通过单色仪光检测口,样品吸收特定波长的光产生吸收峰,再通过光路系统进行会聚和光电倍增管放大后,经光电转换模块转变成电信号,经计算机信号处理后,即可确定待测样品的种类和含量。仪器是由光源模块,单色仪模块,芯片及电源模块,光路聚焦及信号采集模块,电路滤波和放大模块,计算机信号处理及电源控制模块,用户工作界面模块七个子模块构成;仪器以芯片及其电源模块为核心,实现样品的进样和分离。许多难于荧光标记或标记效率低的样品也能检测和分析。

    高功率发光二极管诱导荧光检测微流控生化分析仪

    公开(公告)号:CN101231244A

    公开(公告)日:2008-07-30

    申请号:CN200810033602.1

    申请日:2008-02-15

    Abstract: 本发明涉及一种高功率发光二极管诱导荧光检测微流控生化分析仪,其特征在于所述的微流控生化分析仪是由微流控分析和控制模块、发光二极管光斑转换和荧光收集模块和触摸屏液晶显示控制模块三部分组成,设置发光二极管稳流驱动电路控制发光二极管光源稳定性,采用柱面镜等透镜组件将LED发散光源转换为线光源利于光斑与微通道对准,采用荧光收集透镜、滤光片和针孔等进行荧光信号高效采集和降低背景光,程控高压直流电源的工作顺序和时间自动控制微流控生化分析过程,并由液晶触摸屏实现检测过程的控制、数据显示处理和打印输出。本发明采用高功率LED诱导荧光检测方法结合微流控分析技术,降低了仪器的体积和重量,以及降低成本。

Patent Agency Ranking