基于局部非线性修正的堆芯功率分布在线重构方法及系统

    公开(公告)号:CN113421669A

    公开(公告)日:2021-09-21

    申请号:CN202110671202.9

    申请日:2021-06-17

    Abstract: 本发明公开了基于局部非线性修正的堆芯功率分布在线重构方法及系统,包括:根据反应堆堆芯三维网格离散情况,计算局部非线性修正系数矩阵A;根据局部非线性修正系数矩阵A与给定的背景物理场Fb,确定待重构物理场Fa与背景物理场Fb的局部非线性修正的差值关系;根据探测器布置情况,构建探测器响应矩阵H;根据探测器响应矩阵H,建立待重构物理场理论测量值与真实探测器测量值的差值关系;根据数据同化方程建立代价方程,通过最小化代价方程的求解得到待重构物理场Fa。本发明操作简单,局部非线性修正系数矩阵A不依赖于背景物理场,显著提高了物理场在线重构的效率。

    一种基于区域分解并行的广义粗网有限差分加速方法

    公开(公告)号:CN112800641A

    公开(公告)日:2021-05-14

    申请号:CN202011518814.6

    申请日:2020-12-21

    Abstract: 本发明公开了一种基于区域分解并行的广义粗网有限差分加速方法,包括以下步骤:S1、根据网格文件中的几何离散信息构建堆芯几何对象和子区域几何对象;根据堆芯几何对象构建两级网格结构将各个独立的细网格以堆芯的特定参数为合并规则合并为粗网格;构建细网格与粗网格的集合映射关系;S2、根据堆芯几何对象将长特征线按子区域截断,对截断后的特征线进行细网追踪,生成用于输运扫描的特征线段信息;S3、根据长特征线区域分解追踪信息来确定每个子区域内的粗网格相邻情况以及子区域之间的粗网格相邻情况;S4、基于MOC源迭代求解获取细网格通量,引入GCMFD加速。本发明解决了现有广义粗网有限差分方法不能适用于大规模堆芯计算的问题。

    双重非均匀性空间自屏效应修正方法、装置、设备及介质

    公开(公告)号:CN112364555A

    公开(公告)日:2021-02-12

    申请号:CN202011301026.1

    申请日:2020-11-19

    Abstract: 本发明公开了一种双重非均匀性空间自屏效应修正方法、装置、设备及介质,该方法通过蒙特卡罗方法,对从燃料表面逃脱的所有中子数和从燃料表面逃脱后在慢化剂中不经过任何碰撞,而进入到相邻燃料栅元发生碰撞的中子数进行计算,得到丹可夫因子,然后通过丹可夫因子对中子逃脱概率进行修正,以修正中子共振计算的双重非均匀性;根据均匀前后中子在随机分布介质区的逃脱概率不变,将随机分布介质区等效为均匀化介质;基于弥散颗粒和基体各子区的宏观截面,以及各子区对应的体积份额和空间自屏因子计算均匀化介质的等效截面,以修正中子输运计算的双重非均匀性,实现对随机分布介质燃料元件的双重非均匀性空间自屏效应的修正,提高中子计算准确率。

    适应现代超级计算机硬件架构的特征线法多级并行方法

    公开(公告)号:CN112346873A

    公开(公告)日:2021-02-09

    申请号:CN202011352373.7

    申请日:2020-11-26

    Abstract: 本发明公开了适应现代超级计算机硬件架构的特征线法多级并行方法,包括:对反应堆堆芯利用特征线MOC计算求解中子标通量分布和keff;特征线法MOC计算包括空间、角度、特征线、能量四个维度;将空间、角度、特征线、能量四个维度的并行度映射到现代超级计算机向量化、多核化和集群化复杂硬件架构上;首先进行空间区域分解,空间区域分解并行通过消息传递并行编程模型MPI并行编程模型实现;然后进行角度和特征线区域分解,角度、特征线两个维度的并行度合并使用,通过OpenMP模型展开多级嵌套循环实现;最后进行能群并行向量化处理,能量维度的并行度通过SIMD模型实现。本发明方法计算效率和超级计算资源的利用率。

    一种基于商业压水堆辐照靶件生产放射性同位素的方法

    公开(公告)号:CN111899906A

    公开(公告)日:2020-11-06

    申请号:CN202010806886.4

    申请日:2020-08-12

    Abstract: 本发明公开了一种基于商业压水堆辐照靶件生产放射性同位素的方法,利用商业压水堆辐照靶件生产放射性同位素;具体地,利用商业压水堆辐照靶件生产放射性同位素的操作包括以下步骤:S1.在商业压水反应堆停堆期间,将辐照靶件安装在燃料组件的导向管中;S2.辐照靶件随燃料组件进入堆芯辐照,在堆内中子场环境下发生反应产生目标放射性同位素;S3.反应堆再次停堆后,取出辐照靶件,提取目标放射性同位素。该技术的应用为放射性同位素的生产提供了新的方法,也可更为充分地利用压水反应堆内的中子场环境,提高其经济性能。

Patent Agency Ranking