-
公开(公告)号:CN111737551A
公开(公告)日:2020-10-02
申请号:CN202010452949.0
申请日:2020-05-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/953 , G06F16/951 , G06N3/08 , G06N3/04
Abstract: 本发明公开一种基于异构图注意力神经网络的暗网线索检测方法:步骤一、对暗网进行文本采集;步骤二、针对采集到的暗网文本信息,进行事件标题、关键词及实体提取,构建动态异构信息网络;步骤三、对构建的异构信息网络中的节点进行embedding处理,并得到各节点的特征向量;步骤四、对异构信息网络的图结构进行学习;步骤五、根据对异构信息网络的图结构学习得到的结果,对异构信息网络中的节点进行线索类别分类,从而完成对暗网信息的线索检测。本发明利用了外部知识库作为依托,并且采用了两套方法来对构建的异构信息网络的图结构进行学习,具有良好的线索检测效果。
-
公开(公告)号:CN111581370A
公开(公告)日:2020-08-25
申请号:CN202010310036.5
申请日:2020-04-20
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/335 , G06F16/951 , G06F16/9536 , G06F40/242 , G06Q10/06 , G06Q50/00
Abstract: 本发明公开了一种综合多通道数据来源的网络舆情热度评估方法,包括:步骤一、收集各通道的流数据;步骤二、量化流数据对于目标事件的敏感值和情绪标签;步骤三、基于敏感度和影响力量化得到主体指标值;步骤四、基于敏感消息数、各类情绪标签对应的消息数,量化得到内容指标值;步骤五、基于每日的消息数、用户数、群组数,量化得到传播指标值;步骤六、基于主体指标值、内容指标值、传播指标值,量化得到各通道的综合热度值,并计算得到目标事件当日的总热度值。本方法建立了普适的网络舆情热度评估指标体系,评估结果更准确全面。本发明还公开了一种综合多通道数据来源的网络舆情热度评估装置,本装置对网络舆情热度的评估更准确全面。
-
公开(公告)号:CN110990711A
公开(公告)日:2020-04-10
申请号:CN201910392858.X
申请日:2019-05-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京蓝光汇智网络科技有限公司
IPC: G06F16/9536 , G06F16/958 , G06Q50/00 , G06N20/00
Abstract: 本发明公开了基于机器学习的微信公众号推荐算法,包括:为训练文本标注标签,获取训练文本的关键词及关键词向量,对关键词向量进行聚类计算,获得簇,并确定簇的中心向量;采集公众号文本,获取公众号文本的关键词及关键词向量,根据关键词向量与中心向量的相似度确定公众号文本对应的标签,获得标签分析结果;根据目标用户的历史行为确定目标用户的喜好标签;从标签分析结果中选取与喜好标签相关的标签,将相关的标签对应的公众号文本推荐给目标用户。本发明还提供了基于机器学习的微信公众号推荐系统。本发明能够根据分析用户喜好,进而自动推荐合适的公众号,避免用户受各种良莠不齐的公众号干扰,避免花费过多时间用于挑选公众号文章。
-
公开(公告)号:CN110413784A
公开(公告)日:2019-11-05
申请号:CN201910666645.1
申请日:2019-07-23
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于知识图谱的舆情关联分析方法,包括:提取互联网舆情知识中实体的属性和关系,基于知识图谱构建舆情业务知识库;确定需要关联分析的多个相同或不同类型的实体,采用相交、合并或者消减的方式对多个相同或不同类型的实体进行组合;确定多个相同或不同类型的实体每种组合方式进行关联分析的结果构成,得到分析结果。本发明还提供一种基于知识图谱的舆情关联分析系统。本发明可以实现包括特定人物、特定组织、特定事件、特定专题等在内的相同类型或不同类型知识的关联分析,并实现关联实体的多维度深度分析和关联挖掘,帮助业务用户准确掌握各类不同群体的关联情况,以及关联实体的全方位智能分析结果,进而辅助决策。
-
公开(公告)号:CN109977219A
公开(公告)日:2019-07-05
申请号:CN201910207415.9
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了基于启发式规则的文本摘要自动生成方法,包括:S1、以文本的段落、句子顺序作为启发式语序,将新闻正文分为开始段落、中间段落和结尾段落,并以句子和片段为粒度对各段落进行启发式分割;S2、先以句子为粒度,分别抽取各段落的目标句子,得到各段落的句子摘要集合,再以所述句子摘要集合中的片段为粒度,分别抽取各段落的目标片段,得到各段落的片段摘要集合;S3、去除所述片段摘要集合中的冗余片段,将筛选出的片段按照片段出现的顺序组合,生成文本摘要。以及,基于启发式规则的文本摘要自动生成装置。采用本发明的方法生成的文本摘要的句子组织连贯性好,可读性强。
-
公开(公告)号:CN106168969B
公开(公告)日:2019-05-14
申请号:CN201610524367.2
申请日:2016-07-05
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/958
Abstract: 本发明提供一种信源重要度的评级方法及评级系统,评级方法包括:步骤1,计算信源所属网站的网站重要度值W1;步骤2,计算信源在所属行业的行业重要度值W2;步骤3,预设定网站重要度权重值C1和行业重要度权重值C2;根据下式计算得到信源重要度值M:信源重要度值M=网站重要度值W1*网站重要度权重值C1+行业重要度值W2*行业重要度权重值C2;步骤4,根据信源重要度值M对信源进行重要度评级,并输出信源重要度评级结果。优点为:本发明能够对信源进行客观、科学合理、有效实用的信源重要度评级。
-
公开(公告)号:CN108880980A
公开(公告)日:2018-11-23
申请号:CN201810403059.3
申请日:2018-04-28
Applicant: 国家计算机网络与信息安全管理中心 , 北京蓝光汇智网络科技有限公司
Abstract: 本发明公开一种基于微信群信息的数据分析系统,包括:信息采集模块,其每隔预设时间按发送顺序采集一批预设数量的微信群消息的html标签;数据分析模块,其将信息采集模块采集到的html标签通过正则解析得出其中包含的每条群消息的属性,所述群消息属性包括群编号、群消息编号;缓存去重模块,其将每条群消息属性包含的群编号和群消息编号进行哈希运算得到哈希值,再将相邻两批次中的每条群消息的哈希值对比,若有重复部分,则将后一批次中哈希值重复的群消息删除;多媒体提取模块;对象存储模块;关键词提取模块;群消息库模块。本发明具有能将采集到的微信群消息数据进行分析和统计,最后直观的展示出来,可以有效、直观的监测微信群的优点。
-
公开(公告)号:CN108846017A
公开(公告)日:2018-11-20
申请号:CN201810426304.2
申请日:2018-05-07
Applicant: 国家计算机网络与信息安全管理中心 , 北京天润基业科技发展股份有限公司
Abstract: 本发明一种基于Bi-GRU和字向量的大规模新闻文本的端到端分类方法,包括如下步骤:S1.进行Word Embedding的字级别语义特征表示;S2.构建注意力权重的Bi-GRU字级别的句子特征编码模型;S3.搭建基于注意力权重的Bi-GRU句子级别特征编码模型;S4.使用分层Softmax实现端到端分类实现。本发明方法可降低向量的维度,且有效地防止特征过于稀疏问题。优化了最终的输出向量,增强了模型特征编码有效性。避免维度过高造成的模型难以训练问题,又提供了额外的语义信息。可灵活组合特征抽取模型和各种常见分类器,方便更换调试分类器。计算复杂度比Softmax从|K|降低到log|K|。
-
公开(公告)号:CN108805254A
公开(公告)日:2018-11-13
申请号:CN201810393788.5
申请日:2018-04-27
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06N3/00
CPC classification number: G06N3/006
Abstract: 本发明属于时序预测技术领域,具体提供了一种时序预测的参数优选系统,旨在解决现有技术对先验知识要求高、可拓展途径较低、时间复杂度高、实际可行度低以及鲁棒性差的技术问题。为此目的,本发明提供的参数优化系统包括参数优化模块,参数优化模块配置为基于预先构建的参数优化模型对预先获取的时序预测模型进行参数优化。其中,参数优化模块包括空间调控单元以及收敛调控单元;空间调控单元配置为基于第一权重函数调控参数优化模块的空间搜索范围;收敛调控单元配置为基于第二权重函数调控参数优化模块的收敛速率。本发明的系统增加了分布式表现,各个个体可以高效交流、协作,且提高了算法的性能。
-
公开(公告)号:CN108763319A
公开(公告)日:2018-11-06
申请号:CN201810396753.7
申请日:2018-04-28
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
CPC classification number: G06Q50/01 , G06N3/0454
Abstract: 本发明属于计算机技术领域,具体提供了一种融合用户行为和文本信息的社交机器人检测方法和系统。旨在解决现有技术手动选取特征、忽略社交媒体帖子之间的逻辑性和时序性以及忽略社交平台用户行为信息的问题,本发明的社交机器人的检测方法包括获取待检测社交媒体用户的历史网络数据和好友网络数据;基于上述数据得到用户文本特征向量、行为特征向量以及好友网络特征向量,并将其融合,得到待检测社交媒体用户的用户特征向量;对用户特征向量进行检测,输出检测结果。本发明的方法更加符合社交媒体自身的特性,从多个维度分析待检测社交媒体用户,提升了检测准确率。本发明的系统同样具有上述有益效果。
-
-
-
-
-
-
-
-
-