-
公开(公告)号:CN113639667A
公开(公告)日:2021-11-12
申请号:CN202110874218.X
申请日:2021-07-30
Applicant: 哈尔滨工业大学
Abstract: 本发明属于精密测量技术领域与光学工程领域,具体涉及基于漂移量反馈的纳弧度量级三维角度测量方法与装置;该装置由半导体激光光源、凸透镜、多狭缝光阑、分光镜、偏振分光镜、转折镜、偏转镜、准直物镜组、面阵CCD、四象限位置探测器、固定平面反射镜以及反射靶标组成;该方法赋予反射靶标在光轴方向上的不对称性,使测量光束携带被测物俯仰角、偏航角信息的同时,敏感于被测物滚转角变化,从而使仪器装置具有对被测物三维角度变化的探测能力;具有在相同测量量程下,角度极限分辨力达到纳弧度量级的技术优势;提高系统稳定性至十纳弧度量级,从而解决光束漂移量限制自准直仪极限分辨力的问题。此外,本发明所设计的系统装置具有结构体积小、测量精度高、测量频响高的技术优势。
-
公开(公告)号:CN113639666A
公开(公告)日:2021-11-12
申请号:CN202110874199.0
申请日:2021-07-30
Applicant: 哈尔滨工业大学
Abstract: 本发明属于精密测量技术领域与光学工程领域,具体涉及基于空间光调制的高稳定性纳弧度量级角度测量方法与装置;该装置由LED光源、凸透镜、多狭缝光阑、分光镜、转折镜、透射式空间光调制器、准直物镜组、线阵CCD、四象限位置探测器以及平面反射镜组成;该方法使两路测量光束携带被测物角度变化信息,分别在两个传感器上形成各自图像,利用该两图像位置解算出被测物相对于光轴的俯仰角、偏航角,从而具有对被测物角度变化的探测能力;具有在相同测量量程下,角度极限分辨力达到纳弧度量级的技术优势;提高系统稳定性至十纳弧度量级,从而解决光束漂移量限制自准直仪极限分辨力的问题。此外,本发明所设计的系统装置具有结构体积小、测量精度高、测量频响高的技术优势。
-
公开(公告)号:CN113639665A
公开(公告)日:2021-11-12
申请号:CN202110874198.6
申请日:2021-07-30
Applicant: 哈尔滨工业大学
Abstract: 本发明属于精密测量技术领域与光学工程领域,具体涉及基于漂移量反馈的高稳定性纳弧度量级角度测量方法与装置;该装置由LED光源、凸透镜、多狭缝光阑、分光镜、转折镜、偏转镜、准直物镜组、线阵CCD、四象限位置探测器以及平面反射镜组成;该方法使两路测量光束携带被测物角度变化信息,分别在两个传感器上形成各自图像,利用该两图像位置解算出被测物相对于光轴的俯仰角、偏航角,从而具有对被测物角度变化的探测能力;具有在相同测量量程下,角度极限分辨力达到纳弧度量级的技术优势;提高系统稳定性至十纳弧度量级,解决光束漂移量限制自准直仪极限分辨力的问题。此外,本发明所设计的系统装置具有结构体积小、测量精度高、测量频响高的技术优势。
-
公开(公告)号:CN113056182A
公开(公告)日:2021-06-29
申请号:CN202110061244.0
申请日:2021-01-18
Applicant: 哈尔滨工业大学
IPC: H05K9/00
Abstract: 一种基于石墨烯/透明介质与超薄掺杂金属的透明完美微波吸收器属于光学透明件电磁屏蔽领域。该器件利用共掺杂沉积方法在超薄厚度条件下得到表面连续、粗糙度极低的高质量掺杂金属膜。将石墨烯与透明介质组成石墨烯/透明介质单元,进而与超薄掺杂金属构成微波谐振腔。由于超薄掺杂金属薄膜厚度在几十纳米以下,远远小于微波段电磁波波长,可以提供稳定的宽频段强电磁反射,解决了传统微波谐振腔中反射层电磁反射率存在频率依赖性的问题,为微波吸收器提供了新型的电磁反射结构。进一步,通过理论建模分析得到相应透明介质层厚度可以实现对设计频点微波的完美吸收,并可以使用多层石墨烯/透明介质单元与超薄掺杂金属组成多频点谐振腔,引入多个频点的吸收谐振,极大地拓展了微波吸收器的吸收带宽,实现高性能的宽频带微波吸收。
-
公开(公告)号:CN112945049A
公开(公告)日:2021-06-11
申请号:CN202110108203.2
申请日:2021-01-27
Applicant: 哈尔滨工业大学
IPC: G01B5/00
Abstract: 基于特征点提取的航空轴承内圈沟道形状误差精确评定方法属于航空精密测量技术领域;将包含全部采样点的360°圆周区域定义为第一子域,选择距离最小二乘圆心O(a,b)最近的数据点为第一候选特征点A(xa,ya);将点A(xa,ya)绕O(a,b)逆时针旋转120°得到映像点B1,绕O(a,b)顺时针旋转120°得到映像点B2,确定第二子域及第二候选特征点B(xb,yb);由点A(xa,ya)关于O(a,b)的对称点C1和点B(xb,yb)关于O(a,b)的对称点C2,确定第三子域和第三候选特征点C(xc,yc);本发明实现了航空轴承内圈沟道最大内切圆度误差的精确评定。
-
公开(公告)号:CN112903160A
公开(公告)日:2021-06-04
申请号:CN201911221757.2
申请日:2019-12-03
Applicant: 哈尔滨工业大学
IPC: G01L5/00 , G01N29/07 , G01N29/265
Abstract: 一种基于临界折射纵波的大型高速回转装备装配应力测量方法,属于转子应力测量技术领域。本发明解决了现有的大型回转装备应力测量中,测量的空间分辨率与临界折射纵波信号的分离无法同时保证的问题,以及传统的超声波法测量效率低、测量精度差且会对转子表面造成腐蚀的问题。它采用测量装置实现,测量装置包括并排布置的发射轮、第一接收轮、第二接收轮以及安装在发射轮内部的发射换能器、安装在第一接收轮内的第一接收换能器以及安装在第二接收轮内的第二接收换能器,发射轮、第一接收轮及第二接收轮的轴线相互平行设置。通过将耦合剂填充在发射轮和两个接收轮内,有效避免了现有技术中使用传统超声波方法存在的耦合剂必需与转子表面接触的情况。
-
公开(公告)号:CN112880619A
公开(公告)日:2021-06-01
申请号:CN202110108202.8
申请日:2021-01-27
Applicant: 哈尔滨工业大学
Abstract: 基于子域分割的航空轴承几何误差精确评定方法属于航空精密测量技术领~域;该方法将包含全部采样点的360°圆周区域定义为第一子域A,在该区域内确定第一候选特征点A(xa,ya);将点A(xa,ya)绕圆心O(a,b)逆时针旋转120°得到映像点B1,绕圆心O(a,b)顺时针旋转120°得到映像点B2,由B1O和B2O确定出第~二子域B和第二候选特征点B(xb,yb);求取点A(xa,ya)关于O(a,b)的对称点C1和点B(xb,yb)关于O(a,b)的对称点C2,并确定第三子域~C和第三候选特征点C(xc,yc);本发明实现了对航空轴承几何误差的高精度快速评定。
-
公开(公告)号:CN110877751B
公开(公告)日:2021-04-30
申请号:CN201911227462.6
申请日:2019-12-04
Applicant: 哈尔滨工业大学
IPC: B64F5/10 , B64F5/00 , G06F30/20 , G06F119/14 , G06F17/16
Abstract: 本发明提供了一种基于矢量投影的大型高速回转装备转动惯量堆叠方法,包括首先定义装配体全局坐标系、确定n级转子装配过程中,第i级转子的加工误差矩阵、安装相位矩阵;确定n级转子装配后各级转子由于坐标系平移变换引起的惯性张量传递矩阵、各级转子由于坐标系旋转变换引起的惯性张量传递矩阵,其次确定经过平移与旋转综合变换后第k级转子的全局惯性张量矩阵;然后确定装配体的全局惯性张量矩阵、确定n级转子装配绕转轴的转动惯量堆叠优化模型,最后,根据优化模型利用遗传算法寻优计算各级转子安装相位。本发明可以指导航空发动机转子多级盘装配,实现整体转动惯量最优,使航空发动机转子具有良好的启停特性和精确的姿态控制。
-
公开(公告)号:CN111092362B
公开(公告)日:2021-02-19
申请号:CN201911410391.3
申请日:2019-12-31
Applicant: 哈尔滨工业大学
Abstract: 本发明提出了基于温度自感知柔性薄膜加热器的激光稳频方法与装置,所述双纵模激光器电源的正负极分别连接所述激光管的两端,所述激光管嵌套在所述导热壳体配在所述热隔离层中,所述散热层靠近所述激光管两端的位置上各开有一透光孔,所述偏振分光镜设置在其中一个所述透光孔外,所述光功率转换电路设置在偏振分光镜的反射及折射光路上,所述柔性薄膜、测温电路和A/D转换电路依次单向连接,所述温度传感器粘接在所述散热层外壁上,所述温度传感器与所述微处理器单向连接。本发明的方法可以使激光器的频率复现性从10‑8提升至10‑9,本发明的装置避免了由于热传递产生的热迟滞效应,为激光器的稳频算法提供实时准确的温度数据。
-
公开(公告)号:CN112332100A
公开(公告)日:2021-02-05
申请号:CN202011136561.6
申请日:2020-10-19
Applicant: 哈尔滨工业大学
Abstract: 一种反射频带可电控调节的高透光微波吸收光窗属于光学透明电磁屏蔽及微波通信领域。该光窗由依次重叠且平行配置的石墨烯层、透明介质层A、集成相变材料的电控可调频率选择表面层、透明介质层B和金属网栅层装配构成。其中,集成相变材料的电控可调频率选择表面层由集成相变材料的频率选择表面、金属电极和引线构成。所述的集成相变材料的频率选择表面是由栅网化孔径型频率选择表面、栅网化贴片型频率选择表面和微小相变材料贴片组成的集成相变材料的频率选择表面阵列单元周期性密接排布构成。本发明解决了现有的微波反射器难以同时实现高光学透明性、反射频带可调和反射频带带外抑制以吸收为主的问题。
-
-
-
-
-
-
-
-
-