-
公开(公告)号:CN113114071A
公开(公告)日:2021-07-13
申请号:CN202110413196.7
申请日:2021-04-16
Applicant: 哈尔滨工业大学
Abstract: 一种漆酶在纳米马达驱动中的应用,属于微纳米马达领域。所述方法为:制备基底:将FeCl3·6H2O和乙酸钠加入乙二醇中,并在反应釜中通过溶剂热法制备成磁性纳米粒子基底;在纳米粒子表面形成介孔SiO2壳层并修饰上氨基;在步骤二制备的纳米粒子乙醇分散液中加入戊二醛,震荡5小时;将纳米粒子洗涤干燥后,在PBS溶液中与漆酶溶液振荡反应12小时后得到漆酶驱动的纳米马达。本发明的优点为:1,能够制备无外界燃料驱动的微纳米马达;2,能够对微纳米马达的运动性能进行优化和提升;3,该漆酶驱动的纳米马达能够处理多种污染物;4,该漆酶驱动的纳米马达重现性好,稳定性高,并具备可循环利用的性能。
-
公开(公告)号:CN112504305A
公开(公告)日:2021-03-16
申请号:CN202010844416.7
申请日:2020-08-20
Applicant: 哈尔滨工业大学
IPC: G01D5/14 , H02K11/215
Abstract: 本申请提供一种编码器、电机及编码器绝对位置的检测方法。所述编码器包括:总长度相等且平行设置的第一多对极磁体以及第二多对极磁体,其中,所述第一多对极磁体包括m对磁极,所述第二多对极磁体包括n对磁极,m和n为大于2的自然数且彼此互质;第一组霍尔元件,包括第一线性霍尔传感器和第二线性霍尔传感器,与所述第一多对极磁体相邻设置,并根据所述第一多对极磁体的磁极信号输出第一组检测信号;第二组霍尔元件,包括第三线性霍尔传感器和第四线性霍尔传感器,与所述第二多对极磁体相邻设置,根据所述第二多对极磁体的磁极信号输出第二组检测信号。通过两组组合磁极和4个线性霍尔元件,实现编码器的绝对位置检测,同时提高分辨率。
-
公开(公告)号:CN111668571A
公开(公告)日:2020-09-15
申请号:CN202010463455.2
申请日:2020-05-27
Applicant: 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) , 哈尔滨工业大学
IPC: H01M10/613 , H01M10/617 , H01M10/625 , H01M10/62 , H01M10/643 , H01M10/653 , H01M10/6552 , H01M10/6556 , H01M10/6557 , H01M10/6568 , H01M10/615 , H01M10/6569 , H01M10/0525 , A62C3/16
Abstract: 本发明公开了一种电池模块,包括电池箱以及直列排布于电池箱内的多个圆柱形电芯,所述的电池箱内填充有导热阻燃油,电池箱设置有进出口,电芯间的空隙插设有热管,热管的伸出端没入电芯外的导热阻燃油中;电池组高温时,电池组空隙中的油与电芯换热,热管插入端作为蒸发端将空隙中油的热量传给伸出端,伸出端作为冷凝端再将热量传给从电池箱进口流入的冷态油,换热后的油流出电池箱将热量带走。电池组需要预热时,热管蒸发端和冷凝端互换,流入的热态油将热量传给热管,热管加热空隙中的油进而使电池升温。本发明利用了圆柱形电池直列排布成组时的固有空隙,体积能量密度损失较小,实现了快速控温和均温并提高了阻燃防爆能力。
-
公开(公告)号:CN110194845A
公开(公告)日:2019-09-03
申请号:CN201910581078.X
申请日:2019-06-29
Applicant: 哈尔滨工业大学
Abstract: 一种膜通量可调控的单分子层蛋白膜材料的制备方法及其应用,属于生物膜制备技术领域。所述方法为:配制水相:将蛋白质-聚合物耦合体BSA-NH2/PNIPAAm加入超纯水中配制成水相溶液;配制油相:将交联剂加入油相溶剂当中,配制成油相溶液;将步骤二中的油相溶液加入到步骤一中的水相溶液中,静置3~6h,使蛋白质-聚合物耦合体BSA-NH2/PNIPAAm在油水两相溶液界面中自组装成单分子层蛋白膜。本发明的优点为:1,能够实现二维无支撑单分子层蛋白膜(厚度为4nm~10nm)的制备;2,该膜材料具有Janus结构(即,膜上下两侧的亲疏水性不同)3,能够精确调控膜通量(可透过分子量的大小);4,能够通过温度调控膜通量(开/关)来控制油水两相催化反应。
-
公开(公告)号:CN106861568B
公开(公告)日:2019-07-02
申请号:CN201710184002.4
申请日:2017-03-24
Applicant: 哈尔滨工业大学
Abstract: 一种基于脂肪酶的原细胞模型的制备方法及利用该原细胞模型模拟生物细胞新陈代谢的方法。本发明属于原细胞模拟和仿生材料制备领域,具体涉及一种基于脂肪酶的原细胞模型的制备方法及利用该原细胞模型模拟生物细胞新陈代谢的方法。本发明是为了解决现有原细胞模型不能模拟原细胞新陈代谢功能的问题。方法:利用Pickering微乳液的方法,直接利用脂肪酶充当表面活性剂,构建起水包油的微乳液,从而制得基于脂肪酶的原细胞模型,通过调控温度来控制脂肪酶的活性,制备出具有长大和缩小功能的原细胞模型,实现对原细胞新陈代谢功能的模拟。本发明不仅拓展了原细胞模型的种类,还从功能模拟方面实现了新的突破。
-
公开(公告)号:CN108826539A
公开(公告)日:2018-11-16
申请号:CN201810437329.2
申请日:2018-05-09
Applicant: 哈尔滨工业大学 , 上海能和环保科技有限公司
Abstract: 本发明提供了一种管式露点间接蒸发冷却空调器,包括顶部开有排风口、中部两边分别开有进风口和送风口的壳体、排风机、送风机、换热管组和布水系统,换热管组和布水系统设置在壳体内,换热管组包括多根管外带有横向肋片的立式换热管,每个立式换热管的内表面设有多孔吸水层,布水系统包括喷淋装置和循环水箱,循环水箱通过管道与喷淋装置连接,管道上设有循环水泵,喷淋装置包括布水管和喷淋管,换热管组上下两端均通过一多孔板固定在壳体内,下部的多孔板与循环水箱之间形成二次空气进气室,横向肋片根据冷却空调器的换热程度不同在相应立式换热管处的尺寸不同。本发明结构紧凑,减少设备制造材料消耗量,而且大幅提高换热效率及制冷能效比。
-
公开(公告)号:CN105390666B
公开(公告)日:2018-09-11
申请号:CN201510979841.6
申请日:2015-12-24
Applicant: 哈尔滨工业大学
IPC: H01M4/139
Abstract: 本发明公开了一种锂离子正极材料合成过程中的混锂方法,其步骤如下:一、按照锂离子正极材料组成元素称取相应摩尔比的金属盐并混合,同时称取沉淀剂,不断搅拌至完全溶解在无水乙醇中,将溶液转入内衬中,然后置内衬于高压反应釜中,放入烘箱,温度设置为130~200℃,反应时间设置为8~24 h,待反应釜自然冷却至室温,过滤分离沉淀与滤液,将沉淀干燥得到前驱体;二、将步骤一得到的沉淀置入马弗炉中,置于空气气氛中,以1~5℃/min升温速率从室温升温至300~500℃,预烧3~8 h,然后以相同升温速率升温至700~900℃,烧结时间设置为6~15 h,得到锂离子正极材料。本发明的整个制备流程高效、环保、经济,工艺操作简单,适合工业化大规模生产。
-
公开(公告)号:CN105406164B
公开(公告)日:2018-04-03
申请号:CN201510939297.2
申请日:2015-12-11
Applicant: 哈尔滨工业大学 , 中国电子科技集团公司第三十八研究所
Abstract: 本发明涉及军用车载雷达技术领域,更具体的说是一种用于雷达天线快速架设与撤收的支撑臂折展机构,装置展开或折叠时,无需拆装大型零部件,节省了时间和劳动力,且不改变重要部件工作状态的位置关系;支撑臂分段可折叠,充分利用了空间,在保证运输空间要求的同时,能够支撑口径更大的平面天线;上支撑臂和下支撑臂折叠后互不干涉;导轨和齿条的设置简化了天线部分的结构并减轻重量,且分段处理不影响支撑臂的折叠与展开;上支撑臂和下支撑臂之间采用加固机构连接,极大地加强了整体的刚度和稳定性。上支撑臂和下支撑臂均设置在支承支架上。加固机构用于连接上支撑臂和下支撑臂。天线运行机构安装在上支撑臂和下支撑臂上。
-
公开(公告)号:CN106987579A
公开(公告)日:2017-07-28
申请号:CN201710214104.6
申请日:2017-04-01
Applicant: 哈尔滨工业大学
IPC: C12N9/96
Abstract: 一种基于天然纯蛋白质制备微胶囊提高界面催化反应效率的方法。本发明属于生物催化合成领域,具体涉及一种基于天然纯蛋白质制备微胶囊提高界面催化反应效率的方法。本发明是为了解决现有油包水体系中较差的生物相容性和降低了天然蛋白质酶稳定性的问题。方法:一、天然纯蛋白质溶液的配制;二、利用Pickering微乳液方法,制备出以天然蛋白质为稳定剂的水包油微乳液;三、利用微乳液为模板制备天然蛋白质微胶囊,利用天然蛋白质的催化活性,提高油水两相溶液的催化效率。本发明利用天然蛋白质充当稳定剂,避免了合成稳定剂的繁琐过程,实现了油水两相的高效催化。
-
公开(公告)号:CN104900866B
公开(公告)日:2017-07-21
申请号:CN201510211771.X
申请日:2015-04-29
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种微纳层次结构的富锂正极材料及其制备方法,所述正极材料的化学式为Li1.2Co0.4 Mn0.4O2,制备步骤如下:一、取醋酸锰和醋酸钴溶解在乙二醇溶液中,通过溶剂热反应得到纳米级球状结构的羧基醇盐固溶体;二、将羧基醇盐固溶体通过高温煅烧生成氧化物(Co0.5Mn0.5)3O4;三、将氧化物(Co0.5Mn0.5)3O4与锂盐均匀混合,得到前驱体;四、将前驱体置入马弗炉中高温煅烧,得到具有微纳层次结构的富锂正极材料。本发明所制备的正极材料的一次颗粒为纳米级球状结构,具有Li+扩散路径短、比表面积大与电解质充分接触的优点,有效地提高材料的容量,以及倍率性能,同时二次颗粒为微米级类球状粒子,其表面能低,不易团聚、化学性质稳定,能够很好地维持材料的循环性能。
-
-
-
-
-
-
-
-
-