一种潮汐式自动驾驶BRT的控制方法

    公开(公告)号:CN109267438B

    公开(公告)日:2020-10-16

    申请号:CN201811222702.9

    申请日:2018-10-19

    Abstract: 一种潮汐式自动驾驶BRT的控制方法,它属于公共交通规划领域。本发明解决了人工驾驶BRT车辆在潮汐式可变车道运行,难以保证长距离可变车道安全以及道路利用效率的问题。本发明对潮汐式自动驾驶BRT系统的运营方式、站台设置、车道衔接、行车方向切换、车道清空、系统架构和运行过程进行说明,能够在保证长距离可变车道行车安全的同时,有效解决潮汐车流引起的交通拥堵现象、提高道路利用效率;而且本发明的潮汐式自动驾驶BRT设置方法具有设置灵活和建设成本低廉的特点,相比较于地铁,其建设成本为地铁的1/10左右,但其运量能够达到地铁的1/2,潮汐式自动驾驶BRT单向最大运量甚至可能超过地铁。本发明可以应用于公共交通规划领域用。

    一种软脆光学晶体加工表层荧光性缺陷检测方法

    公开(公告)号:CN111504958A

    公开(公告)日:2020-08-07

    申请号:CN202010158348.9

    申请日:2020-03-09

    Abstract: 一种软脆光学晶体加工表层荧光性缺陷检测方法,涉及一种晶体缺陷检测方法。目的是解决现有方法无法获得晶体表层缺陷的受激荧光的稳态光谱和内部结构的问题。检测方法利用软脆光学晶体加工表层微区荧光性缺陷检测光学系统中进行,一、缺陷定位;二、测量背底;三、测量可见光波段稳态荧光光谱;四、测量可见光波段瞬态荧光光谱;五、测量近红外波段稳态荧光光谱;六、改变波长获得不同激发光波长下的可见光波段瞬态荧光光谱和近红外波段稳态荧光光谱。本发明可以实现晶体元件表层缺陷、表层缺陷激发稳态荧光光谱以及表层缺陷激发瞬态荧光光谱的检测。本发明适用于晶体表层缺陷检测。

    一种无扫描高超分辨光学三维显微成像方法

    公开(公告)号:CN110824681A

    公开(公告)日:2020-02-21

    申请号:CN201911064422.4

    申请日:2019-11-04

    Abstract: 本发明属于光学显微成像技术领域,涉及的是一种无扫描高超分辨光学三维显微成像方法,是一种利用无衍射光束的自弯曲传播效应实现高分辨率、无需机械扫描的三维体成像的方法。将倒置荧光显微镜系统的像面处形成样品的放大像,经第一透镜、反射式或透射式空间光调制器、第二透镜,由CCD相机成像,然后利用空间光调制器产生变化的调制图案,从而得到一系列的投影图像,利用重建算法将这些投影图像进行重建,从而得到原物的三维体结构信息。本发明能够实现无扫描高超分辨率三维显微成像,成像速度较快。

    大口径光学晶体表面微缺陷的快速寻位与批量检测方法

    公开(公告)号:CN108645867A

    公开(公告)日:2018-10-12

    申请号:CN201810520557.6

    申请日:2018-05-25

    Abstract: 大口径光学晶体表面微缺陷的快速寻位与批量检测方法,属于光学工程领域。本发明为了解决大口径光学晶体表面微缺陷的批量、快速和精确检测的难题而提出的。本方法首先采用“连续运动采集”的光栅扫描方式对整块晶体元件完整扫描;然后,通过开发图像采集程序并建立其与数控运动程序的通讯,实现根据晶体实时扫描位置来采集图像的功能;基于图像处理算法实现对采集图像中缺陷点轮廓位置的椭圆拟合,获得单张图片中缺陷点数量、位置、尺寸等信息;最后,开发缺陷点自动检测程序,建立基于Microsoft Access微缺陷信息的数据库,以实现对采集图像的批量检测和缺陷点信息的保存、更新。本发明还为大口径晶体元件表面微缺陷的修复和控制提供详细的参数依据。

    基于45°光纤的差动光纤珐珀加速度传感器及加工方法

    公开(公告)号:CN105004882B

    公开(公告)日:2018-03-02

    申请号:CN201510508643.1

    申请日:2015-08-19

    Abstract: 本发明基于45°光纤的差动光纤珐珀加速度传感器及加工方法属于加速度传感器技术领域;该传感器包括一个中间厚,四周薄,上下表面均镀有反射膜的质量块,对称设置在质量块两侧的硅支撑结构,每个硅支撑结构均与质量块构成珐珀腔,在每个硅支撑结构侧面贴靠底部的位置,均有一根研抛端面为45°的光纤插入;该方法首先加工设置有光纤插口的硅支撑结构和上下表面均镀有反射膜的质量块,然后将硅支撑结构顶端与质量块镀有反射膜的面键合在一起,再将光纤从光纤插口插入并调整,最后将光纤插口密封;本发明不仅能够满足贴合于被测物表面使用的技术需求,而且能够解决共轴型非本征型光纤珐珀腔加速度传感器稳定性差的问题,同时还能提高传感器的测量精度。

    环抛加工修正盘表面形状误差的检测装置及检测方法

    公开(公告)号:CN106949852A

    公开(公告)日:2017-07-14

    申请号:CN201710229911.5

    申请日:2017-04-10

    CPC classification number: G01B11/24

    Abstract: 环抛加工修正盘表面形状误差的检测装置及检测方法,涉及一种形状误差的检测装置及检测方法。本发明为了解决现有技术中由于环抛加工修正盘具有较大的直径和较高的重量,进而造成激光干涉仪和三坐标测量仪无法直接进行表面形状误差的检测的问题。装置由大理石平尺、U形框、精密定位台、激光位移传感器、支撑平台、和矩形玻璃构成。检测方法:一、吊装环抛加工修正盘并组装装置;二、标出直径;三、调整大理石平尺与环抛加工修正盘工作面平行;四、数据采集。本发明解决了大尺寸修正盘工作面朝下且难以翻转的难题,能够半自动地检测大型环抛机的大尺寸修正盘的表面形状误差,检测过程简单精度高。本发明适用于检测环抛加工修正盘表面形状误差。

    一种基于FBG光纤的中心波长稳定装置与方法

    公开(公告)号:CN104613988B

    公开(公告)日:2016-09-07

    申请号:CN201510061572.5

    申请日:2015-02-06

    Abstract: 基于FBG光纤的中心波长稳定装置与方法属于振动信号检测领域;该装置包括ASE光源,沿ASE光源的出射光路依次设置第一光环形器、F‑P传感器、第二光环形器和FBG光纤,FBG光纤的反/透射光路通过第一/二光电转换器连接除法器,除法器依次连接ADC、FPGA、DAC和控制FBG光纤温度的温度控制器;该方法按照时间顺序,依次采集振动信号、提取窄带光、去噪、控制信号转换、调整FBG光纤反射光路的中心波长;本发明由于将FFP‑TF替换成了FBG光纤,并将FBG光纤设置于F‑P传感器的反射光路上,因此不仅降低了对光源的要求,而且提高了强度解调系统的分辨力、量程和信噪比,同时有利于实现仪器小型化,降低成本。

    面向节油的基于车联网的车辆轨迹平滑控制方法

    公开(公告)号:CN105741585A

    公开(公告)日:2016-07-06

    申请号:CN201610264789.0

    申请日:2016-04-25

    CPC classification number: G08G1/0962

    Abstract: 面向节油的基于车联网的车辆轨迹平滑控制方法,属于车联网控制领域。现有的信号配时控制不能消除交叉口处完全停车等待,以及停车延误和燃油消耗影响的问题。一种面向节油的基于车联网的车辆轨迹平滑控制方法,确定控制区域划分方法,其中控制区域划分方法包括基本区域划分和控制点优化方法;根据特定车辆识别遵循的规则,识别出控制区域内的特定车辆;计算速度建议值,并根据速度建议值对步骤二确定出的特定车辆进行车辆轨迹控制。本发明具有提升交通效能,减少油耗的好处。

    基于压电材料的便携式动态车辆超载检测器及超载检测方法

    公开(公告)号:CN103925978B

    公开(公告)日:2016-02-17

    申请号:CN201410186325.3

    申请日:2014-05-05

    Abstract: 基于压电材料的便携式动态车辆超载检测器及超载检测方法,属于道路交通领域,本发明为解决现有车辆承重检测存在的问题。本发明包括钢型承载台、稳态复合板、多个PZT陶瓷薄片和控制单元;所述控制单元包括整流电路、单片机、显示器、信息输入部和数据库;钢型承载台由弧形板和底板构成,在中空部分设置与弧形板的弧度贴合的稳态复合板,留有变形空间;在稳态复合板的表面设置多个PZT陶瓷薄片;多个PZT陶瓷薄片采集车辆前后轮胎压力信号,经整流电路与单片机的输入端相连;并由显示器显示;信息输入部的输出端与单片机的信息输入端相连;单片机的数据传输端与数据库的数据传输端相连。

    一种基于FBG的膜片式高精细度F-P光纤加速度传感器

    公开(公告)号:CN105242067A

    公开(公告)日:2016-01-13

    申请号:CN201510696063.X

    申请日:2015-10-22

    Abstract: 一种基于FBG的膜片式高精细度F-P光纤加速度传感器,属于光纤传感器技术领域。本发明为了解决传统F-P传感器存在的缺陷。写入光纤内的FBG,敏感膜片,正对光纤出射端面的准直透镜,带尾纤套筒,光纤,套管;套管的一端端面上设置敏感膜片,套管内固定准直透镜和带尾纤套筒,带尾纤套筒的尾纤穿出套管的另一端与光纤连接,敏感膜片的中间设有凸起质量块;FBG和敏感膜片上的凸起质量块端面构成F-P腔的一对反射镜;FBG至光纤出射端面,准直透镜,以及准直透镜至凸起质量块的空气腔共同组成了F-P的腔长。敏感膜片使光纤传感器具有非常高的灵敏度,该传感器的输出信号采用相位解调方法进行解调,对温度变化和激光波长漂移具有很强的抗干扰能力。

Patent Agency Ranking