-
公开(公告)号:CN105977145B
公开(公告)日:2018-07-24
申请号:CN201610457787.3
申请日:2016-06-22
Applicant: 中国科学院上海微系统与信息技术研究所 , 中国科学院大学
IPC: H01L21/265 , H01L21/266 , H01L21/324
Abstract: 本发明提供一种应变量子点的制备方法及应变量子点。所述制备方法包括以下步骤:在标的材料上形成光刻胶,在所述光刻胶上形成多个注入窗口,进行H+离子或He离子注入,去除所述光刻胶,进行退火处理,使所述标的材料中的H+离子或He离子聚集成H2或He产生气泡凸起,从而得到标的材料的应变量子点。本发明的方法新颖,制备过程简单,可操作性强,应变量可观、可调;制备过程可控性强,注入窗口的大小、形状、间距,H+离子或He离子注入的能量、剂量,退火温度、时间等工艺参数均可调;且方法可用范围广,晶体材料均可使用该方法制备应变量子点。
-
公开(公告)号:CN107653446A
公开(公告)日:2018-02-02
申请号:CN201610591642.2
申请日:2016-07-26
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: C23C16/0272 , C23C16/26
Abstract: 本发明提供一种提高石墨烯成核密度的石墨烯生长方法,包括如下步骤:S1:提供一Ge衬底,对所述Ge衬底进行离子注入;S2:进行退火,使所述Ge衬底中的注入离子至少有一部分析出到所述Ge衬底表面,以增加所述Ge衬底表面的石墨烯成核点;S3:提供碳源,在所述Ge衬底表面生长得到石墨烯。本发明为石墨烯在Ge表面的生长提供了更多的成核点,从而提高石墨烯的成核密度,大大的增加了石墨烯的生长速度,有利于减少石墨烯的生产成本,并可以通过调节离子的注入剂量与注入能量来调制石墨烯的成核密度。
-
公开(公告)号:CN104157579B
公开(公告)日:2017-10-03
申请号:CN201410457619.5
申请日:2014-09-10
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336
Abstract: 本发明提供一种多沟道全包围栅极的半导体器件结构的制备方法,所述制备方法包括步骤:1)提供一硅衬底,于所述硅衬底表面形成Ge底层;2)在所述Ge底层上生长SiGe/Ge周期结构,最上一层用Ge覆盖;3)于所述SiGe/Ge周期结构及Ge底层中刻蚀出直至所述硅衬底的多个间隔排列的凹槽;4)采用选择性腐蚀工艺去除凹槽之间的SiGe/Ge周期结构中的SiGe,形成具有间隔的多层Ge结构;5)于所述多层Ge结构的上表面及多层Ge结构之间及侧壁形成栅介质层。本发明提供了一种工艺简单,成本低廉的多沟道全包围栅极的半导体器件结构的制备方法,所制备的半导体器件结构具有多个沟道,可以进一步提高器件性能。本发明具有结构及工艺简单,集成度高等优点,适用于工业生产。
-
公开(公告)号:CN104425342B
公开(公告)日:2017-08-15
申请号:CN201310382840.4
申请日:2013-08-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/762 , H01L21/683
Abstract: 本发明提供一种厚度可控的绝缘体上半导体材料的制备方法,包括步骤:1)于第一衬底表面外延一掺杂的单晶薄膜;2)依次外延一重掺杂单晶层及一顶层半导体材料;3)将剥离离子注入至单晶薄膜下方的第一衬底预设深度的位置;4)提供表面具有绝缘层的第二衬底,并键合绝缘层及顶层半导体材料;5)使重掺杂单晶层与第一衬底从该单晶薄膜处分离;6)采用预设溶液腐蚀以去除重掺杂单晶层,其中,所述预设溶液对重掺杂单晶层的腐蚀速率大于其对顶层半导体材料的腐蚀速率。本发明通过掺杂的超薄单晶薄膜实现剥离,将剥离面控制在非常薄的一个层面内;通过高选择比的腐蚀工艺,可以制作出高质量且厚度可控性高的绝缘体上半导体材料。
-
公开(公告)号:CN104332405B
公开(公告)日:2017-02-15
申请号:CN201410482922.0
申请日:2014-09-19
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/335 , H01L29/775 , B82Y10/00
Abstract: 本发明提供一种锗纳米线场效应晶体管的制备方法,包括步骤1)提供SGOI衬底结构;2)刻蚀SiGe层,形成SiGe纳米线阵列;3)对步骤2)的结构进行锗浓缩,得到表面被SiO2层包裹的锗纳米线阵列;4)去除包裹在纳米线两端表面的SiO2层,裸露出锗纳米线的两端;5)在锗纳米线的延长线上沉积金属引线、源极电极和漏极电极,在硅衬底上制作栅极电极;6)在步骤5)的结构表面形成Si3N4保护层;7)去除纳米线图形区域和金属电极图形区域内的Si3N4保护层,直至完全露出锗纳米线、源极电极和漏极电极。本发明的锗纳米线基于自上而下的方法,工艺过程简单,可控性强,与传统的CMOS工艺完全兼容,成本较低,适于工业生产。
-
公开(公告)号:CN105895522A
公开(公告)日:2016-08-24
申请号:CN201610459777.3
申请日:2016-06-22
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/311 , H01L21/02
CPC classification number: H01L21/31111 , H01L21/0217 , H01L21/31133
Abstract: 本发明提供一种去除石墨烯上光刻胶的方法,包括:提供表面具有石墨烯的衬底;在所述石墨烯上形成氮化硅层;在所述氮化硅层上涂覆光刻胶,并进行需要光刻胶的后续工艺处理;利用丙酮浸泡去除部分所述光刻胶;利用氢氟酸浸泡去除所述氮化硅层及剩余的光刻胶。本发明的方法,在石墨烯与光刻胶之间插入一层氮化硅层,利用氢氟酸去除氮化硅层,从而通过去除氮化硅层可有效带走其上难以去除的光刻胶。插入的氮化硅层不会影响后续带胶工艺,易腐蚀,方便去除,且不会对石墨烯造成不利影响,避免了传统打胶处理对石墨烯造成的损伤。
-
公开(公告)号:CN105742443A
公开(公告)日:2016-07-06
申请号:CN201610187620.X
申请日:2016-03-29
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于表面等离子体的硅基光源,所述硅基光源包括基底及形成于所述基底上的Ω阵列微纳结构;所述Ω阵列微纳结构包括至少两个Ω微纳结构单元;其中,所述Ω微纳结构单元包括:发光部;环绕包裹所述发光部部分表面的波导部,且所述波导部未覆盖所述发光部的出光面;环绕包裹所述波导部部分表面的金属层,用以在所述金属层及所述波导部界面上产生表面等离子体;所述金属层底部与所述基底相接触。本发明通过调控材料来调控本征热发光频带,通过集成一系列不同半径R的内层发光材料实现宽频热发光效率增强,并且可以实现光学模式峰位与本征热发光峰位共振使发光效率达到峰值。
-
公开(公告)号:CN105655242A
公开(公告)日:2016-06-08
申请号:CN201410675336.8
申请日:2014-11-21
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/04
Abstract: 本发明提供一种掺杂石墨烯及石墨烯PN结器件的制备方法,其中,所述掺杂石墨烯的制备方法至少包括:提供一铜衬底,在所述铜衬底上形成镍薄膜层;在所述镍薄膜层上选择一特定区域,在所述特定区域分别注入N型掺杂元素和P型掺杂元素,以分别形成富N型掺杂元素区和富P型掺杂元素区;对掺杂元素注入后的所述铜衬底进行第一阶段保温,以使所述铜衬底和所述镍薄膜层形成铜镍合金衬底;然后在甲烷环境下进行第二阶段保温,以分别在所述富N型掺杂元素区和所述富P型掺杂元素区得到N型掺杂石墨烯和P型掺杂石墨烯。本发明结合铜和镍的性质,利用离子注入技术,实现了N型和P型掺杂元素的晶格式掺杂,从而得到稳定的掺杂石墨烯结构。
-
公开(公告)号:CN105321821A
公开(公告)日:2016-02-10
申请号:CN201410328962.X
申请日:2014-07-11
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , H01L29/78 , H01L29/06
Abstract: 本发明提供一种应力可调的悬浮应变薄膜结构及其制备方法,该方法包括以下步骤:S1:提供一自上而下依次包括顶层应变半导体层、埋氧层及半导体衬底的半导体结构,刻蚀顶层应变半导体层形成预设图形微结构及基座;所述微结构包括一对平板及连接于该一对平板之间的至少一条中心桥线;所述平板的外端连接于基座;S2:通过干法腐蚀去除所述微结构下方的埋氧层以释放微结构,使得所述平板应力弛豫,中心桥线应力增加。本发明通过弹性变形机制和图形化改变顶层应变半导体层本身的固有应力,使得平板应力弛豫,而中心桥线应力增加,从而实现应力大小及应力区域的调控,在绝缘体上应变半导体材料结构上制备高质量、大应变的应变纳米线,工艺简单高效。
-
公开(公告)号:CN105129785A
公开(公告)日:2015-12-09
申请号:CN201510532114.5
申请日:2015-08-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: C01B31/04
Abstract: 本发明提供一种绝缘体上石墨烯的制备方法,包括:提供一锗催化衬底,将其放入生长腔室,并通入含氢气氛,以在所述锗催化衬底表面形成Ge-H键;将所述催化衬底加热至预设温度,并通入碳源,在所述锗催化衬底表面生长得到石墨烯;提供一绝缘衬底,将所述锗催化衬底形成有石墨烯的一面与所述绝缘衬底键合,得到键合片;微波处理所述键合片,以使所述Ge-H键断裂,生成氢气,使得所述石墨烯从所述锗催化衬底上剥离,转移至所述绝缘衬底表面,得到绝缘体上石墨烯。本发明无需经过湿法反应过程,减少了缺陷的引入,且石墨烯转移过程中始终有载体支撑,最大程度保留了石墨烯的完整性,有利于得到大尺寸、高质量的绝缘体上石墨烯。
-
-
-
-
-
-
-
-
-