-
公开(公告)号:CN117058400A
公开(公告)日:2023-11-14
申请号:CN202311018632.6
申请日:2023-08-14
Applicant: 杭州电子科技大学
Inventor: 颜成钢 , 曾龙健 , 金颖杰 , 吴旭 , 江涛 , 王帅 , 张继勇 , 李宗鹏 , 丁贵广 , 付莹 , 郭雨晨 , 赵思成 , 孙垚棋 , 朱尊杰 , 高宇涵 , 王鸿奎 , 赵治栋 , 殷海兵
IPC: G06V10/40 , G06V10/82 , G06V10/30 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种微光RAW图像端到端训练的特征提取方法。首先构建包含具有基本像素对像素对应关系的图像对的大规模数据集;然后构建基于L2‑Net网络的深度学习框架(LowerFeat,确定损失函数;再通过构建的大规模数据集对LowerFeat进行训练;最后通过训练好的LowerFeat实现特征提取。本发明提出了LowerFeat框架,该框架以端到端的方式输出RAW格式图像的局部特征检测和描述,能可靠地提取足够的关键点,同时抑制具有不显著和噪声敏感特征的区域。
-
公开(公告)号:CN114112043B
公开(公告)日:2023-11-07
申请号:CN202111340651.1
申请日:2021-11-12
Applicant: 杭州电子科技大学
IPC: G01J3/40
Abstract: 本发明公开了一种光谱成像装置,包括依次设置的镜头、闪耀光栅、带通滤波器、消色差中继透镜组,柱透镜阵列,相机,相机中每个柱透镜对应一组子像素条。本发明通过独特的光路设计,通过像素分区复用实现将三维光谱数据记录在二维像素空间,此时单通道成像的横向分辨率与光谱分辨率互相折中,二者为反比关系,同时单通道成像的纵向分辨率没有影响,即可以实现对三维光谱图像的单次曝光获取,像素区域充分利用;本发明装置可以实时获取场景光谱数据并且实时显示,数据获取和数据处理过程没有时间延迟;可以获得动态场景的光谱数据,并且光源亮度适中,不会对生物样本造成光漂白等伤害。
-
公开(公告)号:CN116797785A
公开(公告)日:2023-09-22
申请号:CN202310327951.9
申请日:2023-03-30
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/26 , G06V10/44 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于特征提炼的伪装物体检测方法,首先获取伪装物体检测数据集,进行数据预处理;构建基于特征提炼的伪装物体检测模型;再通过训练集对构建好的基于特征提炼的伪装物体检测模型训练,对预测结果使用结构损失函数进行监督学习。最后对模型训练结果加以验证。本发明基于特征提炼的方式来构建伪装物体检测模型,对伪装物体图像的特征进行增强处理以及去除背景噪声,利用结构损失函数对结果进行监督学习,使得预测结果更加准确,具有较强的鲁棒性,从而实现对伪装物体的精确分割,对社会具有重要意义。
-
公开(公告)号:CN116665094A
公开(公告)日:2023-08-29
申请号:CN202310563670.3
申请日:2023-05-18
Applicant: 杭州电子科技大学 , 华北电力大学(保定) , 杭州富阳富创大数据产业创新研究院有限公司
IPC: G06V20/40 , G06V30/148 , G06V20/62 , G06V10/82 , G06N3/0464
Abstract: 本发明公开了一种基于YOLOv5的铁路货车字符信息识别方法,S1,通过图像输入模块获得视频帧图像,实时检测是否有车辆进站;是则S2,通过字符检测模块进行数据库建表,再进行字符区域检测并裁剪后输入字符识别模块;S3,字符识别模块将字符检测模块裁剪后的字符图像进行字符识别,得到识别结果;S4,图像输入模块进行实时检测,判断是否有车辆出站;是则S5,通过数据输出模块进行整理及输出。本发明使用定焦摄像头在轨道衡两端进行拍摄,通过基于深度学习的YOLOv5算法识别铁路货车车厢的字符信息,对检测到的字符区域位置进行裁剪,送入基于CRNN算法进行字符识别,将识别到的字符信息进行数据处理,通过上传上层系统、报表文档、大屏展示等多种形式输出。
-
公开(公告)号:CN116597890A
公开(公告)日:2023-08-15
申请号:CN202310662530.1
申请日:2023-06-06
Applicant: 杭州电子科技大学
IPC: G16B5/00 , G06N3/048 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于自优化激活函数的生物信息时间序列预测方法,首先构建一个包含多种激活函数候选集;然后搭建自优化激活函数模块;将新的激活函数应用于循环神经网络中,用于实现非线性变换;最后通过改进后的循环神经网络对生物信息时间序列进行预测。本发明提出了一种新颖的自优化激活函数,使循环神经网络的每个激活函数能随着任务的不同自我优化改变自生结构,实现了循环神经网络设计和优化的更加灵活。与传统方法相比,本发明不仅提高了循环神经网络性能,还有效减少了选择激活函数所需的时间和成本。
-
公开(公告)号:CN111612802B
公开(公告)日:2023-06-20
申请号:CN202010359715.1
申请日:2020-04-29
Applicant: 杭州电子科技大学
IPC: G06T7/12 , G06T7/181 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于现有图像语义分割模型的再优化训练方法及应用。本发明对图像语义分割神经网络模型的最后一层输出,对接近语义边缘的所有像素截取所预测的概率最高的若干个预测标签,通过再优化模型进行特征距离测算,取最近的标签作为该像素的修正预测标签,从而达到提高语义分割预测准确率的目的。本发明提出了基于再识别的边界偏差消除方法,消除了语义边缘邻近区域的不确定性,是对成熟的图像语义分割模型的一次改进。再优化模型专注于语义边缘的修正任务。另外只针对图像语义边缘区域进行优化,在更加具有针对性的前提下,还不会给模型带来过重的运算时间和空间的负担。
-
公开(公告)号:CN111612051B
公开(公告)日:2023-06-20
申请号:CN202010364601.6
申请日:2020-04-30
Applicant: 杭州电子科技大学
IPC: G06V10/764 , G06V10/82 , G06N3/042 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明公开了一种基于图卷积神经网络的弱监督目标检测方法。本发明通过引入只检测到物体一部分的伪标注框作为弱监督目标检测网络的监督条件,通过多实例网络只检测到物体的一部分而不是覆盖全部物体;利用图卷积神经网络把检测为物体框的邻近且相交的候选框学习物体框的特征表示;因为和物体框相交的候选框也是物体的一部分,通过学习检测为物体的框的特征表示来改变候选框的特征表示,邻近的框学习检测为物体的框的特征;候选框和检测为物体框的特征表示就会相似,弱监督网络测试的时候会把与检测为物体框的邻近候选框也分类为目标物体;从而检测出的目标框覆盖更大的面积和更全的物体,提高弱监督目标检测的精度。
-
公开(公告)号:CN116245968A
公开(公告)日:2023-06-09
申请号:CN202310210835.9
申请日:2023-03-07
Applicant: 杭州电子科技大学丽水研究院
Abstract: 本发明公开了基于Transformer的LDR图像生成HDR图像的方法,首先构建基于Transformer的HDR图像生成模型,包括浅层特征对齐模块、金字塔融合模块和图像重建模块;通过浅层特征对齐模块进行特征对齐,通过金字塔融合模块对对齐后的特征进行处理,获得不同尺度的特征,将金字塔融合模块处理后的不同尺度的特征融合成一个尺度;再将融合后的特征送入图像重建模块进行图像重建;最后将图像重建模块输出的结果使用卷积操作得到3层的HDR最终图片。本发明可以更好地学习非局部特征并自适应地减少虚拟阴影。本发明提出了一种新的金字塔融合模块,使图像可以与较低计算成本和根据全局信息。
-
公开(公告)号:CN111612832B
公开(公告)日:2023-04-18
申请号:CN202010355040.3
申请日:2020-04-29
Applicant: 杭州电子科技大学
IPC: G06T7/593 , G06N3/0464 , G06F3/048 , G06N3/08
Abstract: 本发明公开了一种利用多任务互补提高深度估计准确性的方法。本发明方法使用SFM系统得到的稀疏的深度图像作为辅助输入,与RGB图像一同输入到卷积神经网络,作为辅助线索提高深度估计的准确性。将稀疏的深度图像和RGB图像当作有噪声的数据,通过去噪编码器对输入数据进行编码,提取其中的特征,将提取的四组特征串联后进行共享,解决了单独的RGB图像以基于卷积神经网络的方法进行深度估计时没有可靠且鲁棒的线索的问题;将编码后的特征通过解码器重建为精确的深度图,得到了更加精确的深度估计结果。
-
公开(公告)号:CN111127386B
公开(公告)日:2023-04-18
申请号:CN201910610718.5
申请日:2019-07-08
Applicant: 杭州电子科技大学
IPC: G06T7/00 , G06V10/40 , G06V10/766 , G06V10/772 , G06V10/82
Abstract: 本发明公开了一种基于深度学习的图像质量评价方法,包括如下步骤:步骤1:提取结构性特征图;步骤2:提取自然性特征图;步骤3:提取自由能特征图;步骤4:根据每张图对应的所有特征图设计神经网络框架。计算图像梯度做为图像的结构性特征,其次基于自然性特性提取图像的归一化特性做为自然性特征,最后基于大脑的自由能原理,对输入图像和大脑对它的预测图像之间的差异做为图像的高级特征。在特征提取完之后,利用一组无失真图像学习出一个模型并利用该模型来预测图像的质量。失真图像的质量被定义为它的模型与学习到的无失真模型之间的距离。
-
-
-
-
-
-
-
-
-