-
公开(公告)号:CN105082169A
公开(公告)日:2015-11-25
申请号:CN201510607803.8
申请日:2015-09-22
Applicant: 哈尔滨工业大学
Abstract: 一种具有机电输出的大容差微型末端执行器,它涉及一种末端执行器。本发明为解决现有空间机械臂末端执行器无机电输出、可操作性差、容差小、能源消耗大的问题。本发明外壳模块、动力输出模块、传感器模块、多个运动驱动模块和多条捕获运动链;运动链外壳、驱动外壳、螺纹固定壳和机械臂连接件从上到下依次连通,运动固定座安装在运动链外壳和驱动外壳之间,动力输出模块穿设在运动链外壳内,运动驱动模块与动力输出模块同轴并固定在运动固定座上,每条捕获运动链固接在运动固定座上并由运动驱动模块驱动运动,多个连接检测组件均位于运动链外壳的顶端且均布在动力输出模块的周围,运动固定座固接在运动链外壳的底部。本发明用于航天航空领域中。
-
公开(公告)号:CN104461985A
公开(公告)日:2015-03-25
申请号:CN201410853217.7
申请日:2014-12-31
Applicant: 哈尔滨工业大学
CPC classification number: G06F13/4022
Abstract: 基于节点级联的主从同步串行通讯总线及其实现方法,涉及一种主从同步串行通讯总线,本发明为解决现有同步串行通讯采用主从节点复用时钟和数据总线的方式,导致节点数量、通讯距离和速率均受限的问题。本发明所述基于节点级联的主从同步串行通讯装置,该通讯装置包括主节点和n个从节点,n为正整数,主节点包括主节点控制器和隔离差分模块,主节点控制器包括主发送模块M_TX和主接收模块M_RX,每个从节点包括从节点控制器和两个隔离差分模块,从节点控制器包括第一从接收模块RX1、第二从接收模块RX2、第一从发送模块TX1和第二从发送模块TX2。本发明用于同步串行通讯中。
-
公开(公告)号:CN104020773A
公开(公告)日:2014-09-03
申请号:CN201410264716.2
申请日:2014-06-13
Applicant: 哈尔滨工业大学
IPC: G05D1/08
Abstract: 一种基于控制周期自适应时钟同步的加速度最优空间机器人在线轨迹规划方法,本发明涉及一种基于控制周期自适应时钟同步的加速度最优空间机器人在线轨迹规划方法。本发明的目的是解决空间机器人控制中由于上下位机的时钟不同步及关节层轨迹加速度的剧烈变化引起的机器人运动过程中的不平稳问题。步骤一、建立在一个轨迹段规划周期内具有最优加速度的空间机器人关节轨迹曲线位置、速度及加速度的数学模型,并得到关节轨迹方程;步骤二、依据关节轨迹插补的连续性条件,求取步骤一中关节轨迹方程中的参数,并进行关节空间轨迹的连续规划;步骤三、在关节空间轨迹的连续规划的基础上进行同步控制。本发明应用于机器人控制领域。
-
公开(公告)号:CN103955207A
公开(公告)日:2014-07-30
申请号:CN201410168290.0
申请日:2014-04-24
Applicant: 哈尔滨工业大学
IPC: G05B23/02
Abstract: 一种三爪式空间末端执行器在微重力环境下的捕获容差能力测试系统及方法,本发明涉及三爪式空间机械臂末端执行器在微重力环境下捕获目标接口的容差能力测试系统及方法。本发明是要解决现有微重力平台验证系统较复杂,安全性和可靠性差,无法实现在微重力环境下机械臂或航天器在三维空间的六自由度运动。系统包括捕获子系统、目标子系统和测量子系统;一、完成捕获容差能力测试系统的安装;二、确定空间末端执行器坐标系的原点位置以及坐标轴;三、确定出三爪式空间末端执行器位姿;四、确定待捕获目标的位姿;五、得到待捕获目标相对空间末端执行器的位姿偏差;六、不同位姿偏差下进行捕获试验。属于空间机器人或航天器地面验证系统领域。
-
公开(公告)号:CN100522508C
公开(公告)日:2009-08-05
申请号:CN200710072564.6
申请日:2007-07-25
Applicant: 哈尔滨工业大学
Abstract: 机器人灵巧手手指的手指关节,它涉及一种机器人手指的手指关节。本发明有效决解了现有的机器人灵巧手存在可靠性差、驱动系统表现滞后、位置精度差、结构复杂、可维修性差、传递力的空间距离较远的问题。电机(35)固定在第一指节外壳(61)内壁上,第一同步带轮(34)固装在电机(35)的输出轴上,第二同步带轮(31)固装在第一关节轴(20)上,谐波减速器(53)装在第一关节轴(20)上,传动件(18)装在谐波减速器(53)上,指尖一维力矩传感器(28)装在第二关节轴(26)上,第一关节钢丝轮(37)与第一指节外壳(61)的内壁连接,第二关节钢丝轮(39)与指尖一维力矩传感器(28)连接。本发明具有集成度高、可靠性高、位置精度高、迟滞小的优点。
-
公开(公告)号:CN101131586A
公开(公告)日:2008-02-27
申请号:CN200710144404.8
申请日:2007-09-30
Applicant: 哈尔滨工业大学
IPC: G05B19/418
CPC classification number: Y02P90/02
Abstract: 机械臂系统中的M-LVDS高速串行通信装置及其通信控制方法,它涉及的是高速串行通信的技术领域。它是为了克服现有机械手的上位机与下位机之间通讯总线的通信速率太低,导致存在下位机不能快速的从上位机中更新关节角度期望值、速度值、加速度值和此时关节所承受的重力数据的问题。它的主M-LVDS驱动收发器(2-2)、M-LVDS驱动收发器(3-1)的串行通信端都依次连接在串行总线(4)上。它的方法步骤为:每个分节点(3)读取自己的地址数据、待机、实时接收串行总线(4)上传送的数据,主节点(2)待机,主节点(2)周期为T的中断发送数据,分节点(3)接收数据、循环冗余校验。本发明能达到500Mbps(百万字节/秒)的传输速度,在实际应用中将数据传输率被设定为25Mbps,就已满足机械臂实时控制的要求。
-
公开(公告)号:CN100369724C
公开(公告)日:2008-02-20
申请号:CN200610009755.3
申请日:2006-02-28
Applicant: 哈尔滨工业大学
IPC: B25J17/00
Abstract: 空间机械臂模块化关节,它涉及一种空间机器人臂关节。针对目前空间机械臂关节的安全可靠性差,结构复杂的问题。本发明的波发生器(1-3-1)固装在直流无刷电机内,柔轮(1-3-3)装在波发生器(1-3-1)上,刚轮(1-3-2)装在柔轮(1-3-3)上,轴承内环座(1-5)装在刚轮(1-3-2)上,刚轮(1-3-2)与直流无刷电机固接,柔轮(1-3-3)与力矩传感器(1-1)固接,力矩传感器(1-1)与轴承内环座(1-5)之间装有位置传感器,力矩传感器(1-1)与轴承外环座(1-6)固接,轴承内环座(1-5)与轴承外环座(1-6)之间装有轴承(1-4),直流无刷电机上装有磁编码器(2-2),套筒(3)装在直流无刷电机内,驱动电路板(2-3)、控制电路板(2-4)、电源电路板(2-5)和接口电路板(2-6)之间通过支架、直流无刷电机和压环(2-10)固接。本发明具有智能化程度高,集成度高,能适应空间环境的优点。
-
公开(公告)号:CN100363707C
公开(公告)日:2008-01-23
申请号:CN200610009822.1
申请日:2006-03-17
Applicant: 哈尔滨工业大学
IPC: G01B5/008
Abstract: 空间机械臂位姿精度测试系统,涉及一种对空间机械臂进行测试的系统。现有对空间机械臂进行测试的系统存在结构复杂、调试困难、安全可靠性低以及现有气浮测试系统只能实现二维运动的问题。空间机械臂位姿精度测试系统,它包括三坐标测量机(Ⅰ),它还包括设置在三坐标测量机(Ⅰ)的上方、与空间机械臂(Ⅶ)连接的固定系统(Ⅱ)、旋转支撑系统(Ⅲ)、气浮支撑系统(Ⅳ)、末端靶标(Ⅴ)和基座靶标(Ⅵ);本发明所述测试系统结构简单、容易调试、安全可靠性高以及同时可以实现空间机械臂三维运动,利于推广应用。
-
公开(公告)号:CN101100064A
公开(公告)日:2008-01-09
申请号:CN200710072566.5
申请日:2007-07-25
Applicant: 哈尔滨工业大学
Abstract: 机器人灵巧手手指关节钢丝耦合传动机构,它涉及一种机器人手指的传动机构。本发明有效解决了现有的耦合传动机构存在结构复杂、预紧不方便、可靠性差、手指弯曲时的运动协调性差的问题。所述的第一钢丝件(38)和第二钢丝件(48)分别缠绕在第一关节钢丝轮(37)和第二关节钢丝轮(39)上并交叉成“8”字形,钢丝卡板(40)插在第一凹槽(39-2)内,第一钢球1-1安装在第一预紧装置(71)内,第二钢球(1-2)安装在钢丝卡板(40)内,第三钢球(1-3)安装在第二预紧装置(72)内,第四钢球(1-4)装在壁孔(61-3)内。本发明实现了手指上的两个关节的同向1∶1角度的耦合运动,具有结构简单、预紧方便、可靠性好、手指弯曲时的运动协调性好等优点。
-
公开(公告)号:CN101088721A
公开(公告)日:2007-12-19
申请号:CN200710072499.7
申请日:2007-07-11
Applicant: 哈尔滨工业大学
Abstract: 机器人灵巧手手指基关节机构,它涉及一种机器人灵巧手手指。针对现有的机器人灵巧手手指基关节存在关节灵活性差、转动难度大问题。本发明的两套驱动系统设置在框架(1)内,差动机构(2)置于两套驱动系统中间,差动机构(2)由两个主动锥齿轮和两个从动锥齿轮组成,两个主动锥齿轮和两个从动锥齿轮装在关节轴上,两个主动锥齿轮与两个从动锥齿轮啮合,第一驱动系统(9)和第二驱动系统(10)将动力通过相应的主动锥齿轮传递给相应的从动锥齿轮,其中一个从动锥齿轮与二维力矩传感器(3)传动连接,电气控制板(6)、绝对位置传感器(8)和连接电路板(7)固定在框架(1)上。本发明的手指基关节的两个自由度是通过四个相互啮合的锥齿轮实现的,其整体结构紧凑,加工、装配容易。
-
-
-
-
-
-
-
-
-