-
公开(公告)号:CN111738093A
公开(公告)日:2020-10-02
申请号:CN202010467350.4
申请日:2020-05-28
Applicant: 哈尔滨工业大学
Abstract: 本发明是一种基于梯度特征的冰壶球自动测速方法。本发明属于冰壶球自动测速技术领域,本发明获取冰壶比赛视频,判定冰壶是否运动;根据前掷线的形状生成模板图像,提取模板图像的梯度信息,根据梯度信息确定模板图像中心在某一帧图像上的坐标;根据模板图像中心在某一帧图像上的坐标,确定冰壶球通过前掷线时的速度。本发明在通过自动检测冰壶球在前掷线处的速度,为冰壶机器人进行精确落点提供技术支持。在综合考虑了实际的计算精度与运算速度后,提出一种基于梯度特征的冰壶球自动测速方法,解决了因摄像头视角不同、场地背景复杂以及冰面反光而导致的绝大多数特征匹配算法失效的问题,为冰壶机器人将冰壶球精确投掷到大本营中心提供支持。
-
-
公开(公告)号:CN111127320A
公开(公告)日:2020-05-08
申请号:CN201911341072.1
申请日:2019-12-23
Applicant: 哈尔滨工业大学(威海)
IPC: G06T3/40
Abstract: 本发明实施例提供一种基于深度学习的光声图像超分辨重建方法及装置,其中,方法包括:通过k-Wave工具箱、迭代重建算法,制备光声图像超分辨重建仿真数据集,并通过光声实验和图像下采样算法补充实验数据集;构建超分辨率网络SE-EDSR;采用预训练策略在仿真数据集和实验数据集上递进式地训练SE-EDSR,依次完成×2、×3、×4的超分辨重建任务,得到最终的光声图像×4超分辨重建模型;将目标光声图像输入训练好的光声图像×4超分辨重建模型,输出超分辨重建后的×4的高分辨图像。可实现基于深度学习的光声图像超分辨重建,显著降低传统重建算法对光声信号质量的严苛要求,有效节省信号采集带来的经济成本及时间成本。
-
公开(公告)号:CN110659629A
公开(公告)日:2020-01-07
申请号:CN201910954285.5
申请日:2019-10-09
Applicant: 哈尔滨工业大学
Abstract: 本发明提出一种基于双谱和深度卷积神经网络的微弱X射线脉冲星信号辨识方法,所述方法利用高通滤波器滤掉实际探测时存在的低频成分及红噪声成分;将滤波得到的信号进行自相关处理,提取其自相关函数,降低噪声的干扰;之后对自相关函数进行双谱变换,提取其双谱信息,进一步免疫非二次相位耦合噪声的干扰;之后将双谱图片送入深度卷积神经网络进行分类任务训练,确定网络的参数模型;最后利用训练完毕的网络对脉冲星信号进行分类。本发明所提出的基于深度卷积神经网络的脉冲星信号双谱辨识方法能够对脉冲星信号进行有效识别。
-
公开(公告)号:CN109064443A
公开(公告)日:2018-12-21
申请号:CN201810641415.5
申请日:2018-06-22
Applicant: 哈尔滨工业大学
CPC classification number: G06T7/0012 , G06K9/627 , G06T7/11 , G06T2207/10132 , G06T2207/20081 , G06T2207/20084 , G06T2207/30056 , G06T2207/30084
Abstract: 一种基于腹部超声图像的多模型器官分割方法及系统,它解决了传统腹部超声图像器官分割方法准确度不足、实时性差以及通用性差的问题。本发明的步骤为:步骤一:将扫查的超声视频流解码为单帧图像并应用直方图均衡化对图像进行预处理;步骤二:基于改进后的U‑Net分割模型对单帧图像实现腹部器官粗略分割;步骤三:结合GoogleNet腹部器官分类模型对单帧图像的分类结果、医学上的器官结构先验知识以及视频帧间相关性特点等多个模型对粗略分割结果进行修正,实现腹部器官精细分割。本发明利用多模型方法完成基于腹部超声图像的器官精细分割,分割准确度高,实时性和通用性好,为端到端的智能诊断系统提供了实现平台,并可为医疗人员提供有效的诊断辅助。
-
公开(公告)号:CN108986204A
公开(公告)日:2018-12-11
申请号:CN201710402050.6
申请日:2017-06-01
Applicant: 哈尔滨工业大学
Abstract: 一种基于双重校准的全自动快速室内场景三维重建装置,它涉及装置设计、位置粗校准、基于奇异值的关键点提取、局部收敛抑制、特征描述子的提取与匹配等方法。本装置为一键式重建,它解决了传统室内三维重建操作复杂的问题,是一款全自动,环境适应度高的重建装置。同时通过离散的数据进行场景重建,大大的减少了重建数据量,提高了系统的快速性。本装置的实现步骤为:一、装置设计;二、机体镜头粗校准;三、校准误差判断;四、机体镜头精校准;五、室内场景重建。本发明对装置进行镜头校准,通过步进电机实现全自动化,将获得的24帧数据根据校准数据融合,可快速的在显示端看到重建结果,适用于室内场景的自动化快速重建。
-
公开(公告)号:CN108961221A
公开(公告)日:2018-12-07
申请号:CN201810619917.8
申请日:2018-06-15
Applicant: 哈尔滨工业大学
CPC classification number: G06T7/001 , G06K9/6223 , G06T7/12 , G06T7/73 , G06T2207/10004 , G06T2207/10024 , G06T2207/30164
Abstract: 一种航空插头现场静态图像检测算法,它涉及运用图像处理技术进行故障诊断,解决了重要装备现场临时插接大量航空插头的故障检测问题。本发明的步骤为:一、对航空插头图像进行层次化聚类,并利用定制的判别条件结束各层聚类;二、根据针头坐标辨识参数:旋转角、相邻插针橫轴和纵轴间距;三、依据得到的参数变换模板,并计算变换后的模板针头坐标与插头针头坐标之差,当该差值较大时,判定该插针存在故障。本发明的基本思想是不对原始图像进行变换而只是通过多次聚类进行分割,估计出插头姿态参数后去变换插头标准模板,进而匹配出每个插针的位置误差,这样能避免变换原始图像所造成的像素误差,有效降低误检率。
-
公开(公告)号:CN105631480B
公开(公告)日:2018-10-26
申请号:CN201511022779.8
申请日:2015-12-30
Applicant: 哈尔滨工业大学
IPC: G06K9/62
Abstract: 一种基于多层卷积网络与数据重组折叠的高光谱数据分类方法,其步骤如下:一、对三维高光谱数据展开分类前进行预处理,获得包含有效光谱信息的数据矩阵与标签向量;二、对数据矩阵进行特征扩维,并对特征维进行按列折叠重组,获得重组的三维高光谱数据输入矩阵;三、设定多层卷积网络结构参数与初始值;四、利用前向传播与BP算法逐层计算特征与误差,并对网络权值与偏置进行更新,不断迭代获得网络稳定参数,最终获得能够用于分类的网络模型与参数。相比于其他方法,该方法原理清楚,结构清晰,识别时间短,同时探测辨识率高,是针对高光谱数据的一个有效分类方法,适用于高光谱图像快速目标探测与分类识别应用。
-
公开(公告)号:CN108695000A
公开(公告)日:2018-10-23
申请号:CN201810447761.X
申请日:2018-05-11
Applicant: 哈尔滨工业大学
CPC classification number: G16H50/20 , G06T7/0012 , G06T2207/10132 , G06T2207/20104
Abstract: 一种基于超声图像的甲状腺弥漫性疾病智能诊断方法及系统,它涉及基于小波多子图共生矩阵和条索特征的SVM二重级联分类方法,实现了高准确度的甲状腺弥漫性疾病智能诊断系统。本发明的步骤为:一、从原始超声图像中选择ROI并进行预处理;二、对处理后的ROI构造小波多子图共生矩阵并提取其纹理特征;三、对处理后的ROI提取条索纹理特征;四、对处理后的ROI提取其他纹理特征扩充特征空间;五、利用mRMR方法进行特征选择;六、进行基于SVM的二重级联分类。本发明利用小波变换抑制超声图像斑点噪声,提取条索特征表述桥本病,利用mRMR进行特征选择和SVM进行分类,能够高精度地对甲状腺弥漫性疾病进行分类诊断,适用于甲状腺弥漫性疾病的计算机辅助诊断。
-
公开(公告)号:CN108537817A
公开(公告)日:2018-09-14
申请号:CN201710119417.3
申请日:2017-03-02
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种基于多尺度球状增强滤波器和水平集算法的运动估计方法,它涉及到超声自由呼吸序列的肝肿瘤跟踪问题。其特征在于有效地解决了在自由呼吸下的肝肿瘤运动跟踪方法不稳定,实时性差的问题。本发明的步骤如下:步骤一、对得到的超声图像序列进行预处理;步骤二、使用多尺度球状增强滤波器对目标区域进行边缘粗提取;步骤三、基于目标区域的粗提取边缘,利用基于水平集算法的CV模型提取清晰的边界信息;步骤四、确定目标的几何中心并对搜寻区域进行更新。本发明利用多尺度球状增强滤波器和基于水平集算法的CV模型处理已有超声图像序列,提取出目标区域清晰的边界信息,适用于自由呼吸序列,保证了肝肿瘤运动跟踪过程的稳定性和实时性。
-
-
-
-
-
-
-
-
-