-
公开(公告)号:CN112779376B
公开(公告)日:2022-09-20
申请号:CN202011517693.3
申请日:2020-12-21
Applicant: 武汉科技大学
IPC: C21B13/00
Abstract: 本发明提供了一种闪速还原处理钒钛矿的方法。该方法为:将钒钛磁铁矿粉与还原气体一同从闪速反应炉的炉顶进料喷孔中喷入闪速炉膛内,控制炉内温度为800~1500℃,进行闪速还原反应;将反应产生的混合还原矿粉降落到与闪速反应炉下部连通的熔分炉内,进行熔融分离处理,得到熔融钢水和高钛渣。本发明提供的方法采用闪速还原‑熔融分离的工艺实现了钒钛磁铁矿粉高金属转化率(达到88%以上)和钛渣直接与铁粉直接分离的有益效果,该工艺方法具备工序简单,成本低廉的优点。
-
公开(公告)号:CN114289726A
公开(公告)日:2022-04-08
申请号:CN202111682372.3
申请日:2021-12-30
Applicant: 武汉科技大学
IPC: B22F9/08 , C22C38/02 , C22C38/12 , C22C38/16 , C22C38/04 , C22C38/14 , C22C38/06 , B22F1/142 , B22F1/07 , H01F1/147 , H01F41/02
Abstract: 本发明提供了一种FeSiBPNbCu纳米晶磁粉及其制备方法。该制备方法以高磷铁矿或含有高磷铁矿、铌铁矿、铜砂、硼砂的混合物作为反应原料,采用氢基还原的方式对反应原料进行还原熔炼,得到的还原合金经熔融除渣、合金化,形成精炼钢液;再采用气雾化法快速冷却精炼钢液,制得FeSiBPNbCu非晶粉体;在高于晶化温度的条件下进行热处理后,得到FeSiBPNbCu纳米晶磁粉。通过上述方式,本发明能够有效利用冶金工艺与纳米晶磁粉成型工艺之间的协同作用,在精确控制冶炼条件的基础上有效简化工艺流程,从而在保证制得的纳米晶磁粉具有优异软磁性能的同时以低成本实现大规模高效生产。
-
公开(公告)号:CN114250404A
公开(公告)日:2022-03-29
申请号:CN202111656416.5
申请日:2021-12-30
Applicant: 武汉科技大学
IPC: C22C33/06 , B22D11/06 , C22C38/02 , C22C38/12 , C22C38/16 , C22C38/04 , C21B13/00 , C21D9/52 , C21D6/00 , H01F1/147 , H01F41/02
Abstract: 本发明提供了一种FeSiBNbCu纳米晶软磁合金及其制备方法。该制备方法以铁矿石或含有铁矿石、铌铁矿、铜砂、硼砂的混合物作为反应原料,采用氢基还原的方式对反应原料进行还原熔炼,得到的还原合金经熔融除渣、合金化,形成精炼钢液;再采用单辊旋淬法快速冷却精炼钢液,制得FeSiBNbCu非晶带材;在高于晶化温度的条件下进行热处理后,得到FeSiBNbCu纳米晶软磁合金。通过上述方式,本发明能够有效利用冶金工艺与纳米晶软磁合金成型工艺之间的协同作用,在精确控制冶炼条件的基础上有效简化工艺流程,从而在保证制得的纳米晶软磁合金具有优异软磁性能的同时以低成本实现大规模高效生产。
-
公开(公告)号:CN113528984A
公开(公告)日:2021-10-22
申请号:CN202110708561.7
申请日:2021-06-25
Applicant: 武汉科技大学
Abstract: 本发明提供了一种FeSiPC非晶软磁合金及其制备方法。该制备方法为:首先将高磷铁矿原料和磷灰石混合均匀进行碳基还原处理,得到还原预处理后的钢液;然后进行脱硫处理,得到脱硫处理后的钢液;接着进行硅铁合金化处理,得到合金化处理后的钢液;再利用单辊旋淬技术,将所述合金化处理后的钢液快速冷却得到非晶带材;最后进行等温热处理,制备得到FeSiPC非晶软磁合金。该制备方法,以高磷铁矿和磷灰石为原料,采用直接还原或熔融还原非高炉炼铁技术制备得到还原预处理钢液。此外,设计的Fe80Si1P10C9(at.%)合金成分与还原预处理钢液成分相差不大,只需要经过微合金化即可得到目标合金,然后采用非晶带材一次成型工艺,具有流程短、成本低、能耗低的优势。
-
公开(公告)号:CN109847768B
公开(公告)日:2021-10-12
申请号:CN201910140636.9
申请日:2019-02-26
Applicant: 武汉科技大学
IPC: B01J27/138 , B01J20/06 , C02F1/28 , C02F1/30 , B01J20/30 , C02F101/30 , C02F101/10
Abstract: 本发明公开了一种钛渣的综合利用方法,主要以含TiO2为49%~51%的含钛电炉熔分渣为基础原料,通过碱熔和水浸处理,除去Al和Si,然后通过酸解使滤渣中的金属化合物完全转化为金属离子,利用Ti4+在加热条件下易水解的特性,通过调控温度使得Ti4+水解形成纳米TiO2;然后通过共沉淀反应使溶液中的Mg2+、Fe3+和Ca2+析出制得Mg2‑xCaxFeCl型层状双氢氧化物;然后采用固相混合法实现纳米TiO2与LDH的有效复合制备出TiO2/Mg2‑xCaxFeCl复合材料,并不需要高温和高压,工艺简单,成本低,且工艺条件易于控制,无二次污染物产生。
-
公开(公告)号:CN108467942B
公开(公告)日:2020-01-10
申请号:CN201810150330.7
申请日:2018-02-13
Applicant: 武汉科技大学
Abstract: 本发明涉及一种从锌置换渣中选择性浸出锌、铅、镓和锗的方法,其包括如下步骤:S1.将锌置换渣磨细处理,采用去离子水对其进行浸出处理,浸出完成后,固液分离得含锌浸出液和水浸渣;S2.采用稀硫酸对水浸渣进行浸出处理,浸出完成后,固液分离得含镓浸出液和硫酸浸出渣;S3.采用双氧水对硫酸浸出渣进行浸出处理,浸出时以氨水调节pH,浸出完成后,固液分离得含锗浸出液和双氧水浸出渣;S4.采用氢氧化钠溶液对双氧水浸出渣进行浸出处理,浸出完成后,固液分离得含铅浸出液和氢氧化钠浸出渣。有益效果为,实现了锌、镓、锗和铅的高效选择性分离;未引入F‑,设备腐蚀较小;工序简单,易于操作,镓锗回收率较高,有利于降低生产成本。
-
公开(公告)号:CN109847768A
公开(公告)日:2019-06-07
申请号:CN201910140636.9
申请日:2019-02-26
Applicant: 武汉科技大学
IPC: B01J27/138 , B01J20/06 , C02F1/28 , C02F1/30 , B01J20/30 , C02F101/30 , C02F101/10
Abstract: 本发明公开了一种钛渣的综合利用方法,主要以含TiO2为49%~51%的含钛电炉熔分渣为基础原料,通过碱熔和水浸处理,除去Al和Si,然后通过酸解使滤渣中的金属化合物完全转化为金属离子,利用Ti4+在加热条件下易水解的特性,通过调控温度使得Ti4+水解形成纳米TiO2;然后通过共沉淀反应使溶液中的Mg2+、Fe3+和Ca2+析出制得Mg2-xCaxFeCl型层状双氢氧化物;然后采用固相混合法实现纳米TiO2与LDH的有效复合制备出TiO2/Mg2-xCaxFeCl复合材料,并不需要高温和高压,工艺简单,成本低,且工艺条件易于控制,无二次污染物产生。
-
公开(公告)号:CN119351640A
公开(公告)日:2025-01-24
申请号:CN202411512962.5
申请日:2024-10-28
Abstract: 本发明提供的一种利用CO2气体处理转炉炉渣的方法,其原理为:使用弱氧化性的CO2与钢渣反应,将钢渣内的弱磁性FeO转化为强磁性Fe3O4,且强磁性Fe3O4不会被氧化为弱磁性的Fe2O3;同时将钢渣内的金属硫化物转化为金属氧化物,再进行破碎、磁选;筛选出的铁成分返回炼钢,剩余的低硫高碱度渣作为生石灰的替代品二次利用。本发明将钢渣中含铁组分氧化为高磁性的Fe3O4,使得铁的收得率达到94%以上,磁选出来的含铁物质直接送回转炉参与冶炼;同时,将钢渣中的金属硫化物转为金属氧化物,硫以二氧化硫的形式从渣中脱除,使磁选后的高碱度渣含硫量极低,可以作为生石灰的替代品,作用于钢铁生产的全流程而被二次利用。
-
公开(公告)号:CN115418441A
公开(公告)日:2022-12-02
申请号:CN202211020106.9
申请日:2022-08-24
Applicant: 武汉尚圆融信新型材料有限公司 , 武汉科技大学
Abstract: 本发明提供了一种转炉出钢过程的高效脱氮剂及其脱氮方法。该脱氮剂包含5~25wt%的Al2O3、30~60wt%的SiO2、10~30wt%的CaO、10~30wt%的TiO2和1~2wt%的MgO,能够形成具有较高氮容量的渣系,与钢液中的氮充分反应,达到较高的脱氮率。本发明通过在转炉出钢过程中加入该脱氮剂,能够构建良好的动力学条件,使脱氮剂在转炉出钢的强搅拌条件下分离成微小液滴弥散分布在钢液中,对钢液进行脱氮;在转炉出钢完成后的钢包炉精炼过程中,脱氮剂还能上浮至钢液表面形成一层富含脱氮剂的渣层,继续对所述钢液进行脱氮,进一步提高脱氮率,有效解决了转炉高废钢比冶炼条件下钢液的增氮问题。
-
公开(公告)号:CN114231859B
公开(公告)日:2022-07-12
申请号:CN202111572566.8
申请日:2021-12-21
Applicant: 武汉科技大学
Abstract: 本发明提供了一种FeSiB(C)非晶软磁合金及其制备方法。该制备方法以铁矿石或铁矿石与硼砂的混合物作为反应原料,采用碳基还原或氢基还原的方式对反应原料进行还原熔炼,将得到的还原产物熔融除渣并合金化,得到精炼钢液;再采用单辊旋淬法快速冷却精炼钢液,得到FeSiB(C)非晶合金带材;经热处理后,得到FeSiB(C)非晶软磁合金。通过上述方式,本发明能够有效利用冶金工艺与非晶合金成型工艺之间的协同作用,在精确控制冶炼条件的基础上有效简化工艺流程,控制杂质含量,并精确控制合金成分,大幅降低生产成本,在保证产品具有优异软磁性能的同时以低成本实现大规模高效生产,满足工业化生产与应用的需求。
-
-
-
-
-
-
-
-
-